Rotation free isogeometric thin shell analysis using PHT-splines

N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K. U. Bletzinger, Y. Bazilevs, Timon Rabczuk

Research output: Contribution to journalArticle

251 Citations (Scopus)

Abstract

This paper presents a novel approach for isogeometric analysis of thin shells using polynomial splines over hierarchical T-meshes (PHT-splines). The method exploits the flexibility of T-meshes for local refinement. The main advantage of the PHT-splines in the context of thin shell theory is that it achieves C1 continuity, so the Kirchhoff-Love theory can be used in pristine form. No rotational degrees of freedom are needed. Numerical results show the excellent performance of the present method.

Original languageEnglish
Pages (from-to)3410-3424
Number of pages15
JournalComputer Methods in Applied Mechanics and Engineering
Volume200
Issue number47-48
DOIs
Publication statusPublished - 2011 Nov 1
Externally publishedYes

Fingerprint

splines
Splines
mesh
shell theory
continuity
flexibility
polynomials
degrees of freedom
Polynomials

Keywords

  • Isogeometric analysis
  • NURBS
  • PHT-splines
  • T-meshes
  • Thin shell

ASJC Scopus subject areas

  • Computer Science Applications
  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • Physics and Astronomy(all)

Cite this

Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K. U., Bazilevs, Y., & Rabczuk, T. (2011). Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 200(47-48), 3410-3424. https://doi.org/10.1016/j.cma.2011.08.014

Rotation free isogeometric thin shell analysis using PHT-splines. / Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y.; Rabczuk, Timon.

In: Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 47-48, 01.11.2011, p. 3410-3424.

Research output: Contribution to journalArticle

Nguyen-Thanh, N, Kiendl, J, Nguyen-Xuan, H, Wüchner, R, Bletzinger, KU, Bazilevs, Y & Rabczuk, T 2011, 'Rotation free isogeometric thin shell analysis using PHT-splines', Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 47-48, pp. 3410-3424. https://doi.org/10.1016/j.cma.2011.08.014
Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y et al. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering. 2011 Nov 1;200(47-48):3410-3424. https://doi.org/10.1016/j.cma.2011.08.014
Nguyen-Thanh, N. ; Kiendl, J. ; Nguyen-Xuan, H. ; Wüchner, R. ; Bletzinger, K. U. ; Bazilevs, Y. ; Rabczuk, Timon. / Rotation free isogeometric thin shell analysis using PHT-splines. In: Computer Methods in Applied Mechanics and Engineering. 2011 ; Vol. 200, No. 47-48. pp. 3410-3424.
@article{9899a98628f941ed8dda13d8ef296a25,
title = "Rotation free isogeometric thin shell analysis using PHT-splines",
abstract = "This paper presents a novel approach for isogeometric analysis of thin shells using polynomial splines over hierarchical T-meshes (PHT-splines). The method exploits the flexibility of T-meshes for local refinement. The main advantage of the PHT-splines in the context of thin shell theory is that it achieves C1 continuity, so the Kirchhoff-Love theory can be used in pristine form. No rotational degrees of freedom are needed. Numerical results show the excellent performance of the present method.",
keywords = "Isogeometric analysis, NURBS, PHT-splines, T-meshes, Thin shell",
author = "N. Nguyen-Thanh and J. Kiendl and H. Nguyen-Xuan and R. W{\"u}chner and Bletzinger, {K. U.} and Y. Bazilevs and Timon Rabczuk",
year = "2011",
month = "11",
day = "1",
doi = "10.1016/j.cma.2011.08.014",
language = "English",
volume = "200",
pages = "3410--3424",
journal = "Computer Methods in Applied Mechanics and Engineering",
issn = "0045-7825",
publisher = "Elsevier",
number = "47-48",

}

TY - JOUR

T1 - Rotation free isogeometric thin shell analysis using PHT-splines

AU - Nguyen-Thanh, N.

AU - Kiendl, J.

AU - Nguyen-Xuan, H.

AU - Wüchner, R.

AU - Bletzinger, K. U.

AU - Bazilevs, Y.

AU - Rabczuk, Timon

PY - 2011/11/1

Y1 - 2011/11/1

N2 - This paper presents a novel approach for isogeometric analysis of thin shells using polynomial splines over hierarchical T-meshes (PHT-splines). The method exploits the flexibility of T-meshes for local refinement. The main advantage of the PHT-splines in the context of thin shell theory is that it achieves C1 continuity, so the Kirchhoff-Love theory can be used in pristine form. No rotational degrees of freedom are needed. Numerical results show the excellent performance of the present method.

AB - This paper presents a novel approach for isogeometric analysis of thin shells using polynomial splines over hierarchical T-meshes (PHT-splines). The method exploits the flexibility of T-meshes for local refinement. The main advantage of the PHT-splines in the context of thin shell theory is that it achieves C1 continuity, so the Kirchhoff-Love theory can be used in pristine form. No rotational degrees of freedom are needed. Numerical results show the excellent performance of the present method.

KW - Isogeometric analysis

KW - NURBS

KW - PHT-splines

KW - T-meshes

KW - Thin shell

UR - http://www.scopus.com/inward/record.url?scp=80052649552&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052649552&partnerID=8YFLogxK

U2 - 10.1016/j.cma.2011.08.014

DO - 10.1016/j.cma.2011.08.014

M3 - Article

VL - 200

SP - 3410

EP - 3424

JO - Computer Methods in Applied Mechanics and Engineering

JF - Computer Methods in Applied Mechanics and Engineering

SN - 0045-7825

IS - 47-48

ER -