Scanning thermal wave microscopy (STWM)

Ohmyoung Kwon, Li Shi, Arun Majumdar

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

This paper presents a technique, scanning thermal wave microscopy (STWM), which can image the phase lag and amplitude of thermal waves with sub-micrometer resolution by scanning a temperature-sensing nanoscale tip across a sample surface. Phase lag measurements during tip-sample contact showed enhancement of tip-sample heat transfer due to the presence of a liquid film. The measurement accuracy of STWM is proved by a benchmark experiment and comparison to theoretical prediction. The application of STWM for sub-surface imaging of buried structures is demonstrated by measuring the phase lag and amplitude distributions of an interconnect via sample. The measurement showed excellent agreement with a finite element analysis offering the promising prospects of three-dimensional thermal probing of micro and nanostructures. Finally, it was shown that the resolving power of thermal waves for subsurface structures improves as the wavelengths of the thermal waves become shorter at higher modulation frequencies.

Original languageEnglish
Pages (from-to)156-163
Number of pages8
JournalJournal of Heat Transfer
Volume125
Issue number1
DOIs
Publication statusPublished - 2003 Feb
Externally publishedYes

Keywords

  • Electronics
  • Heat transfer
  • Microscale
  • Microstructures
  • Nanoscale
  • Nonintrusive diagnostics

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Scanning thermal wave microscopy (STWM)'. Together they form a unique fingerprint.

Cite this