Segment-Weighted Information-Based Event-Triggered Mechanism for Networked Control Systems

Zhou Gu, Dong Yue, Choon Ki Ahn, Shen Yan, Xiangpeng Xie

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In this study, the event-triggered problem of networked control systems (NCSs) is investigated, and a novel information transmission scheme is established. Under this scheme, the segment-weighted information (SWI) in a sliding historical window (SHW) is calculated and then sampled. Compared with the traditional direct sampling method, in this approach, the control input includes historical information in the SHW, thereby leading to less information loss due to sampling. This study also emphasizes on designing an SWI-based event-triggered mechanism (ETM) for scheduling network transmission. Different from most of the existing ETMs, the proposed SWI-based ETM leverages historical information to determine which data are necessary for the whole control system. Our approach can greatly reduce the number of unexpected triggering events of a control system with stochastic disturbances owing to the introduction of the SWI in the ETM. Moreover, Zeno phenomena are prevented thanks to periodic sampling. Sufficient conditions are derived based on the Lyapunov functional approach, and a numerical simulation example is provided to demonstrate the effectiveness of the proposed method.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalIEEE Transactions on Cybernetics
DOIs
Publication statusAccepted/In press - 2022

Keywords

  • Control systems
  • Cybernetics
  • Delays
  • Event-triggered mechanism (ETM)
  • networked control system (NCS)
  • Networked control systems
  • Numerical stability
  • Sampling methods
  • segment-weighted information (SWI)
  • sliding historical window (SHW)
  • Stability criteria

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Information Systems
  • Human-Computer Interaction
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Segment-Weighted Information-Based Event-Triggered Mechanism for Networked Control Systems'. Together they form a unique fingerprint.

Cite this