Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

Qianjin Feng, Mark Foskey, Wufan Chen, Dinggang Shen

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online learning mechanism, the authors carried out a comparison between partial online update strategy and full online update strategy. Using the full online update strategy, the mean DSC was improved from 86.6% to 89.3% with 2.8% gain. On the basis of full online update strategy, the manual modification before online update strategy was introduced and tested, the best performance was obtained; here, the mean DSC and the mean ASD achieved 92.4% and 1.47 mm, respectively. Conclusions: The proposed prostate segmentation method provided accurate and robust segmentation results for CT images even under the situation where the samples of patient under radiotherapy were limited. A conclusion that the proposed method is suitable for clinical application can be drawn.

Original languageEnglish
Pages (from-to)4121-4132
Number of pages12
JournalMedical physics
Volume37
Issue number8
DOIs
Publication statusPublished - 2010 Aug
Externally publishedYes

Keywords

  • deformable model
  • prostate CT images
  • segmentation
  • shape statistics

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Segmenting CT prostate images using population and patient-specific statistics for radiotherapy'. Together they form a unique fingerprint.

  • Cite this