TY - GEN
T1 - Self-updatable encryption
T2 - 19th International Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT 2013
AU - Lee, Kwangsu
AU - Choi, Seung Geol
AU - Lee, Dong Hoon
AU - Park, Jong Hwan
AU - Yung, Moti
PY - 2013
Y1 - 2013
N2 - Revocation and key evolving paradigms are central issues in cryptography, and in PKI in particular. A novel concern related to these areas was raised in the recent work of Sahai, Seyalioglu, and Waters (Crypto 2012) who noticed that revoking past keys should at times (e.g., the scenario of cloud storage) be accompanied by revocation of past ciphertexts (to prevent unread ciphertexts from being read by revoked users). They introduced revocable-storage attribute-based encryption (RS-ABE) as a good access control mechanism for cloud storage. RS-ABE protects against the revoked users not only the future data by supporting key-revocation but also the past data by supporting ciphertext-update, through which a ciphertext at time T can be updated to a new ciphertext at time T + 1 using only the public key. Motivated by this pioneering work, we ask whether it is possible to have a modular approach, which includes a primitive for time managed ciphertext update as a primitive. We call encryption which supports this primitive a "self-updatable encryption" (SUE). We then suggest a modular cryptosystems design methodology based on three sub-components: a primary encryption scheme, a key-revocation mechanism, and a time-evolution mechanism which controls the ciphertext self-updating via an SUE method, coordinated with the revocation (when needed). Our goal in this is to allow the self-updating ciphertext component to take part in the design of new and improved cryptosystems and protocols in a flexible fashion. Specifically, we achieve the following results: - We first introduce a new cryptographic primitive called self-updatable encryption (SUE), realizing a time-evolution mechanism. We also construct an SUE scheme and prove its full security under static assumptions. - Following our modular approach, we present a new RS-ABE scheme with shorter ciphertexts than that of Sahai et al. and prove its security. The length efficiency is mainly due to our SUE scheme and the underlying modularity. - We apply our approach to predicate encryption (PE) supporting attribute-hiding property, and obtain a revocable-storage PE (RS-PE) scheme that is selectively-secure. - We further demonstrate that SUE is of independent interest, by showing it can be used for timed-release encryption (and its applications), and for augmenting key-insulated encryption with forward-secure storage.
AB - Revocation and key evolving paradigms are central issues in cryptography, and in PKI in particular. A novel concern related to these areas was raised in the recent work of Sahai, Seyalioglu, and Waters (Crypto 2012) who noticed that revoking past keys should at times (e.g., the scenario of cloud storage) be accompanied by revocation of past ciphertexts (to prevent unread ciphertexts from being read by revoked users). They introduced revocable-storage attribute-based encryption (RS-ABE) as a good access control mechanism for cloud storage. RS-ABE protects against the revoked users not only the future data by supporting key-revocation but also the past data by supporting ciphertext-update, through which a ciphertext at time T can be updated to a new ciphertext at time T + 1 using only the public key. Motivated by this pioneering work, we ask whether it is possible to have a modular approach, which includes a primitive for time managed ciphertext update as a primitive. We call encryption which supports this primitive a "self-updatable encryption" (SUE). We then suggest a modular cryptosystems design methodology based on three sub-components: a primary encryption scheme, a key-revocation mechanism, and a time-evolution mechanism which controls the ciphertext self-updating via an SUE method, coordinated with the revocation (when needed). Our goal in this is to allow the self-updating ciphertext component to take part in the design of new and improved cryptosystems and protocols in a flexible fashion. Specifically, we achieve the following results: - We first introduce a new cryptographic primitive called self-updatable encryption (SUE), realizing a time-evolution mechanism. We also construct an SUE scheme and prove its full security under static assumptions. - Following our modular approach, we present a new RS-ABE scheme with shorter ciphertexts than that of Sahai et al. and prove its security. The length efficiency is mainly due to our SUE scheme and the underlying modularity. - We apply our approach to predicate encryption (PE) supporting attribute-hiding property, and obtain a revocable-storage PE (RS-PE) scheme that is selectively-secure. - We further demonstrate that SUE is of independent interest, by showing it can be used for timed-release encryption (and its applications), and for augmenting key-insulated encryption with forward-secure storage.
KW - Attribute-based encryption
KW - Cloud storage
KW - Key evolving systems
KW - Predicate encryption
KW - Public-key encryption
KW - Revocation
KW - Self-updatable encryption
UR - http://www.scopus.com/inward/record.url?scp=84892399624&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-42033-7_13
DO - 10.1007/978-3-642-42033-7_13
M3 - Conference contribution
AN - SCOPUS:84892399624
SN - 9783642420320
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 235
EP - 254
BT - Advances in Cryptology, ASIACRYPT 2013 - 19th International Conference on the Theory and Application of Cryptology and Information Security, Proceedings
Y2 - 1 December 2013 through 5 December 2013
ER -