TY - GEN
T1 - Semi-Supervised Deep Adversarial Learning for Brain-Computer Interface
AU - Ko, Wonjun
AU - Jeon, Eunjin
AU - Lee, Jiyeon
AU - Suk, Heung Il
N1 - Funding Information:
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451; Development of BCI based Brain and Cognitive Computing Technology for Recognizing Users Intentions using Deep Learning).
Publisher Copyright:
© 2019 IEEE.
PY - 2019/2
Y1 - 2019/2
N2 - Recent advances in deep learning have made a progressive impact on BCI researches. In particular, convolutional neural networks (CNNs) with different architectural forms have been studied for spatio-Temporal or spatio-spectral feature representation learning. However, there still remain many challenges and limitations due to the necessity of a large annotated training samples for robustness. In this paper, we propose a semi-supervised deep adversarial learning framework that effectively utilizes generated artificial samples along with labeled and unlabelled real samples in discovering class-discriminative features to boost robustness of a classifier, thus to enhance BCI performance. It is also noteworthy that the proposed framework allows to exploit unlabelled real samples to better uncover the underlying patterns inherent in a user's EEG signals. In order to justify the validity of the proposed framework, we conducted exhaustive experiments with 'Recurrent Spatio-Temporal Neural Network' CNN architectures over the public BCI Competition IV-IIa dataset. From our experiments, we could observe statistically significant improvements on performance, compared to the competing methods with the conventional framework. We have also visualized learned convolutional weights in terms of activation pattern maps, separability of extracted features, and validity of generated artificial samples.
AB - Recent advances in deep learning have made a progressive impact on BCI researches. In particular, convolutional neural networks (CNNs) with different architectural forms have been studied for spatio-Temporal or spatio-spectral feature representation learning. However, there still remain many challenges and limitations due to the necessity of a large annotated training samples for robustness. In this paper, we propose a semi-supervised deep adversarial learning framework that effectively utilizes generated artificial samples along with labeled and unlabelled real samples in discovering class-discriminative features to boost robustness of a classifier, thus to enhance BCI performance. It is also noteworthy that the proposed framework allows to exploit unlabelled real samples to better uncover the underlying patterns inherent in a user's EEG signals. In order to justify the validity of the proposed framework, we conducted exhaustive experiments with 'Recurrent Spatio-Temporal Neural Network' CNN architectures over the public BCI Competition IV-IIa dataset. From our experiments, we could observe statistically significant improvements on performance, compared to the competing methods with the conventional framework. We have also visualized learned convolutional weights in terms of activation pattern maps, separability of extracted features, and validity of generated artificial samples.
KW - Brain-Computer Interface
KW - Convolutional Neural Network
KW - Deep Learning
KW - Electroencephalogram
KW - Generative Adversarial Learning
KW - Motor Imagery
KW - Semi-Supervised Learning
UR - http://www.scopus.com/inward/record.url?scp=85068338345&partnerID=8YFLogxK
U2 - 10.1109/IWW-BCI.2019.8737345
DO - 10.1109/IWW-BCI.2019.8737345
M3 - Conference contribution
AN - SCOPUS:85068338345
T3 - 7th International Winter Conference on Brain-Computer Interface, BCI 2019
BT - 7th International Winter Conference on Brain-Computer Interface, BCI 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 7th International Winter Conference on Brain-Computer Interface, BCI 2019
Y2 - 18 February 2019 through 20 February 2019
ER -