Semiconducting behavior of bilayer graphene synthesized by plasma-enhanced chemical vapor deposition and its application in field effect transistors

Yu Zhao, Chang Soo Park, Wei Dong Fei, Cheol Jin Lee

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We demonstrated the generation of a bandgap in the bilayer graphene synthesized by plasma-enhanced chemical vapor deposition. By adjusting the growth time, the defect density and nano-crystallite size of bilayer graphene were easily controlled, affecting the bandgap of bilayer graphene and the field effect mobility of bilayer graphene field effect transistor (FET). The defect density increased with increasing growth time, whereas the nano-crystallite size decreased. The semiconducting behavior of bilayer graphene was observed by measuring the temperature-dependent conductivity. Defects generated by plasma radiation induce broken symmetry in graphene, thus opening a bandgap. The bandgap energies in the bilayer graphene are 90, 156, and 187 meV for growth times of 5, 10, and 30 min, respectively. The back-gate bilayer graphene FET presented the p-type semiconducting behavior and the field effect mobility of approximately 1000 cm2 V-1 s-1 when the bandgap energy was 156 meV.

Original languageEnglish
Pages (from-to)103-106
Number of pages4
JournalMaterials Letters
Volume136
DOIs
Publication statusPublished - 2014 Dec 1

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Semiconducting behavior of bilayer graphene synthesized by plasma-enhanced chemical vapor deposition and its application in field effect transistors'. Together they form a unique fingerprint.

  • Cite this