TY - JOUR
T1 - Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI
AU - Wang, Yan
AU - Ma, Guangkai
AU - An, Le
AU - Shi, Feng
AU - Zhang, Pei
AU - Lalush, David S.
AU - Wu, Xi
AU - Pu, Yifei
AU - Zhou, Jiliu
AU - Shen, Dinggang
N1 - Funding Information:
This work was supported in part by the National Institutes of Health under Grants MH100217
Publisher Copyright:
© 1964-2012 IEEE.
PY - 2017/3
Y1 - 2017/3
N2 - Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.
AB - Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.
KW - Local coordinate coding (LCC)
KW - positron emission tomography (PET)
KW - semisupervised tripled dictionary learning (SSTDL)
KW - sparse representation (SR)
UR - http://www.scopus.com/inward/record.url?scp=85013420116&partnerID=8YFLogxK
U2 - 10.1109/TBME.2016.2564440
DO - 10.1109/TBME.2016.2564440
M3 - Article
C2 - 27187939
AN - SCOPUS:85013420116
SN - 0018-9294
VL - 64
SP - 569
EP - 579
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 3
M1 - 7469380
ER -