Sensorimotor learning of acupuncture needle manipulation using visual feedback

Won Mo Jung, Jinwoong Lim, In Seon Lee, Hi Joon Park, Christian Wallraven, Younbyoung Chae

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Objective Humans can acquire a wide variety of motor skills using sensory feedback pertaining to discrepancies between intended and actual movements. Acupuncture needle manipulation involves sophisticated hand movements and represents a fundamental skill for acupuncturists. We investigated whether untrained students could improve their motor performance during acupuncture needle manipulation using visual feedback (VF). Methods Twenty-one untrained medical students were included, randomly divided into concurrent (n = 10) and post-trial (n = 11) VF groups. Both groups were trained in simple lift/thrusting techniques during session 1, and in complicated lift/thrusting techniques in session 2 (eight training trials per session). We compared the motion patterns and error magnitudes of preand post-training tests. Results During motion pattern analysis, both the concurrent and post-trial VF groups exhibited greater improvements in motion patterns during the complicated lifting/thrusting session. In the magnitude error analysis, both groups also exhibited reduced error magnitudes during the simple lifting/thrusting session. For the training period, the concurrent VF group exhibited reduced error magnitudes across all training trials, whereas the post-trial VF group was characterized by greater error magnitudes during initial trials, which gradually reduced during later trials. Conclusions Our findings suggest that novices can improve the sophisticated hand movements required for acupuncture needle manipulation using sensorimotor learning with VF. Use of two types of VF can be beneficial for untrained students in terms of learning how to manipulate acupuncture needles, using either automatic or cognitive processes.

Original languageEnglish
Article numbere0139340
JournalPloS one
Issue number9
Publication statusPublished - 2015 Sep 25

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Sensorimotor learning of acupuncture needle manipulation using visual feedback'. Together they form a unique fingerprint.

Cite this