Simulation study of a novel target oriented SPECT design using a variable pinhole collimator

Seungbin Bae, Jaehee Chun, Hyemi Cha, Jungyeol Yeom, Kisung Lee, Hakjae Lee

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

PURPOSE: In the past decade, demands for organ specific (target oriented) single-photon emission computed tomography (SPECT) is increasing, and several groups have conducted studies on developing clinical dedicated SPECT with pinhole collimator to improve the spatial resolution. However, acceptance angle of the collimator cannot be adjusted to fit the different ROIs of target objects because the shape of pinhole could not be changed, and the magnifying factor cannot be maximized as the collimator-to-detector distance is fixed. Furthermore, those dedicated pinhole SPECTs are typically made for a single purpose and therefore possess a drawback in that it cannot be utilized for any other purpose. In this study, we propose a novel SPECT system using variable pinhole collimator (VP SPECT) whose parameters are flexible.

METHODS: The proposed variable pinhole collimator is modeled on conventional pinhole by piling several tungsten layers of different apertures. Depending on the combination of the holes in each layer, a variety of hole diameters and acceptance angles of the pinhole can be made. In addition, VP SPECT system allows attaching the collimator to the object as close as possible to maximize the sensitivity and adjust the distance of the pinhole from the scintillation detector to optimize the system resolution for each rotation angle, automatically. For quantitative measurement, we compared the sensitivity and spatial resolution of VP SPECT with those of conventional pinhole SPECT. To determine the possibility of the clinical and preclinical use of proposed system, a digital mouse whole-body (MOBY) phantom is used for simulating the live mouse model.

RESULTS: The result of simulation using ultra-micro hot spot phantom shows that the sensitivity of the proposed VP SPECT system is about 297% of that of the conventional system. While hot rods of diameter 0.6 mm can be distinguished in the image with the proposed VP SPECT system, 1.2-mm hot rods are barely discernible in the conventional pinhole SPECT image. According to the result of MOBY phantom simulation, heart walls separated by 3 mm were not distinguished in conventional pinhole SPECT images, but were clearly discerned in VP SPECT images.

CONCLUSIONS: In this study, we designed a novel pinhole collimator for SPECT and presented preliminary results of target oriented imaging with a simulation study. Currently, we are pursuing strategies to realize the proposed system, with the goal to apply the technology into a high-sensitivity and high-resolution preclinical SPECT. Should VP SPECT be applied to the clinical setting, we anticipate a high-sensitivity, high-resolution system for applications such as heart dedicated SPECT or related fields.

Original languageEnglish
Pages (from-to)470-478
Number of pages9
JournalMedical Physics
Volume44
Issue number2
DOIs
Publication statusPublished - 2017 Feb 1

Fingerprint

Single-Photon Emission-Computed Tomography
Tungsten

Keywords

  • pinhole collimator
  • simulation
  • single-photon emission computed tomography

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Simulation study of a novel target oriented SPECT design using a variable pinhole collimator. / Bae, Seungbin; Chun, Jaehee; Cha, Hyemi; Yeom, Jungyeol; Lee, Kisung; Lee, Hakjae.

In: Medical Physics, Vol. 44, No. 2, 01.02.2017, p. 470-478.

Research output: Contribution to journalArticle

Bae, Seungbin ; Chun, Jaehee ; Cha, Hyemi ; Yeom, Jungyeol ; Lee, Kisung ; Lee, Hakjae. / Simulation study of a novel target oriented SPECT design using a variable pinhole collimator. In: Medical Physics. 2017 ; Vol. 44, No. 2. pp. 470-478.
@article{9e632fbf32e140f79faecfe81535b471,
title = "Simulation study of a novel target oriented SPECT design using a variable pinhole collimator",
abstract = "PURPOSE: In the past decade, demands for organ specific (target oriented) single-photon emission computed tomography (SPECT) is increasing, and several groups have conducted studies on developing clinical dedicated SPECT with pinhole collimator to improve the spatial resolution. However, acceptance angle of the collimator cannot be adjusted to fit the different ROIs of target objects because the shape of pinhole could not be changed, and the magnifying factor cannot be maximized as the collimator-to-detector distance is fixed. Furthermore, those dedicated pinhole SPECTs are typically made for a single purpose and therefore possess a drawback in that it cannot be utilized for any other purpose. In this study, we propose a novel SPECT system using variable pinhole collimator (VP SPECT) whose parameters are flexible.METHODS: The proposed variable pinhole collimator is modeled on conventional pinhole by piling several tungsten layers of different apertures. Depending on the combination of the holes in each layer, a variety of hole diameters and acceptance angles of the pinhole can be made. In addition, VP SPECT system allows attaching the collimator to the object as close as possible to maximize the sensitivity and adjust the distance of the pinhole from the scintillation detector to optimize the system resolution for each rotation angle, automatically. For quantitative measurement, we compared the sensitivity and spatial resolution of VP SPECT with those of conventional pinhole SPECT. To determine the possibility of the clinical and preclinical use of proposed system, a digital mouse whole-body (MOBY) phantom is used for simulating the live mouse model.RESULTS: The result of simulation using ultra-micro hot spot phantom shows that the sensitivity of the proposed VP SPECT system is about 297{\%} of that of the conventional system. While hot rods of diameter 0.6 mm can be distinguished in the image with the proposed VP SPECT system, 1.2-mm hot rods are barely discernible in the conventional pinhole SPECT image. According to the result of MOBY phantom simulation, heart walls separated by 3 mm were not distinguished in conventional pinhole SPECT images, but were clearly discerned in VP SPECT images.CONCLUSIONS: In this study, we designed a novel pinhole collimator for SPECT and presented preliminary results of target oriented imaging with a simulation study. Currently, we are pursuing strategies to realize the proposed system, with the goal to apply the technology into a high-sensitivity and high-resolution preclinical SPECT. Should VP SPECT be applied to the clinical setting, we anticipate a high-sensitivity, high-resolution system for applications such as heart dedicated SPECT or related fields.",
keywords = "pinhole collimator, simulation, single-photon emission computed tomography",
author = "Seungbin Bae and Jaehee Chun and Hyemi Cha and Jungyeol Yeom and Kisung Lee and Hakjae Lee",
year = "2017",
month = "2",
day = "1",
doi = "10.1002/mp.12075",
language = "English",
volume = "44",
pages = "470--478",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "2",

}

TY - JOUR

T1 - Simulation study of a novel target oriented SPECT design using a variable pinhole collimator

AU - Bae, Seungbin

AU - Chun, Jaehee

AU - Cha, Hyemi

AU - Yeom, Jungyeol

AU - Lee, Kisung

AU - Lee, Hakjae

PY - 2017/2/1

Y1 - 2017/2/1

N2 - PURPOSE: In the past decade, demands for organ specific (target oriented) single-photon emission computed tomography (SPECT) is increasing, and several groups have conducted studies on developing clinical dedicated SPECT with pinhole collimator to improve the spatial resolution. However, acceptance angle of the collimator cannot be adjusted to fit the different ROIs of target objects because the shape of pinhole could not be changed, and the magnifying factor cannot be maximized as the collimator-to-detector distance is fixed. Furthermore, those dedicated pinhole SPECTs are typically made for a single purpose and therefore possess a drawback in that it cannot be utilized for any other purpose. In this study, we propose a novel SPECT system using variable pinhole collimator (VP SPECT) whose parameters are flexible.METHODS: The proposed variable pinhole collimator is modeled on conventional pinhole by piling several tungsten layers of different apertures. Depending on the combination of the holes in each layer, a variety of hole diameters and acceptance angles of the pinhole can be made. In addition, VP SPECT system allows attaching the collimator to the object as close as possible to maximize the sensitivity and adjust the distance of the pinhole from the scintillation detector to optimize the system resolution for each rotation angle, automatically. For quantitative measurement, we compared the sensitivity and spatial resolution of VP SPECT with those of conventional pinhole SPECT. To determine the possibility of the clinical and preclinical use of proposed system, a digital mouse whole-body (MOBY) phantom is used for simulating the live mouse model.RESULTS: The result of simulation using ultra-micro hot spot phantom shows that the sensitivity of the proposed VP SPECT system is about 297% of that of the conventional system. While hot rods of diameter 0.6 mm can be distinguished in the image with the proposed VP SPECT system, 1.2-mm hot rods are barely discernible in the conventional pinhole SPECT image. According to the result of MOBY phantom simulation, heart walls separated by 3 mm were not distinguished in conventional pinhole SPECT images, but were clearly discerned in VP SPECT images.CONCLUSIONS: In this study, we designed a novel pinhole collimator for SPECT and presented preliminary results of target oriented imaging with a simulation study. Currently, we are pursuing strategies to realize the proposed system, with the goal to apply the technology into a high-sensitivity and high-resolution preclinical SPECT. Should VP SPECT be applied to the clinical setting, we anticipate a high-sensitivity, high-resolution system for applications such as heart dedicated SPECT or related fields.

AB - PURPOSE: In the past decade, demands for organ specific (target oriented) single-photon emission computed tomography (SPECT) is increasing, and several groups have conducted studies on developing clinical dedicated SPECT with pinhole collimator to improve the spatial resolution. However, acceptance angle of the collimator cannot be adjusted to fit the different ROIs of target objects because the shape of pinhole could not be changed, and the magnifying factor cannot be maximized as the collimator-to-detector distance is fixed. Furthermore, those dedicated pinhole SPECTs are typically made for a single purpose and therefore possess a drawback in that it cannot be utilized for any other purpose. In this study, we propose a novel SPECT system using variable pinhole collimator (VP SPECT) whose parameters are flexible.METHODS: The proposed variable pinhole collimator is modeled on conventional pinhole by piling several tungsten layers of different apertures. Depending on the combination of the holes in each layer, a variety of hole diameters and acceptance angles of the pinhole can be made. In addition, VP SPECT system allows attaching the collimator to the object as close as possible to maximize the sensitivity and adjust the distance of the pinhole from the scintillation detector to optimize the system resolution for each rotation angle, automatically. For quantitative measurement, we compared the sensitivity and spatial resolution of VP SPECT with those of conventional pinhole SPECT. To determine the possibility of the clinical and preclinical use of proposed system, a digital mouse whole-body (MOBY) phantom is used for simulating the live mouse model.RESULTS: The result of simulation using ultra-micro hot spot phantom shows that the sensitivity of the proposed VP SPECT system is about 297% of that of the conventional system. While hot rods of diameter 0.6 mm can be distinguished in the image with the proposed VP SPECT system, 1.2-mm hot rods are barely discernible in the conventional pinhole SPECT image. According to the result of MOBY phantom simulation, heart walls separated by 3 mm were not distinguished in conventional pinhole SPECT images, but were clearly discerned in VP SPECT images.CONCLUSIONS: In this study, we designed a novel pinhole collimator for SPECT and presented preliminary results of target oriented imaging with a simulation study. Currently, we are pursuing strategies to realize the proposed system, with the goal to apply the technology into a high-sensitivity and high-resolution preclinical SPECT. Should VP SPECT be applied to the clinical setting, we anticipate a high-sensitivity, high-resolution system for applications such as heart dedicated SPECT or related fields.

KW - pinhole collimator

KW - simulation

KW - single-photon emission computed tomography

UR - http://www.scopus.com/inward/record.url?scp=85015599626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015599626&partnerID=8YFLogxK

U2 - 10.1002/mp.12075

DO - 10.1002/mp.12075

M3 - Article

C2 - 28032904

AN - SCOPUS:85015599626

VL - 44

SP - 470

EP - 478

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 2

ER -