Single-step plasma-induced hierarchical structures for tunable water adhesion

Tae Jun Ko, Sang Jin Park, Min Sung Kim, Sun Mi Yoon, Seong Jin Kim, Kyu Hwan Oh, Sahn Nahm, Myoung Woon Moon

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Smart surfaces in nature have been extensively studied to identify their hierarchical structures in micro-/nanoscale to elucidate their superhydrophobicity with varying water adhesion. However, mimicking hybrid features in multiscale requires complex, multi-step processes. Here, we proposed a one-step process for the fabrication of hierarchical structures composed in micro-/nanoscales for superhydrophobic surfaces with tunable water adhesion. Hierarchical patterns were fabricated using a plasma-based selective etching process assisted by a dual scale etching mask. As the metallic mesh is placed above the substrate, it serves the role of dual scale etching masks on the substrate: microscale masks to form the micro-wall network and nanoscale masks to form high-aspect-ratio nanostructures. The micro-walls and nanostructures can be selectively hybridized by adjusting the gap distance between the mesh and the target surface: single nanostructures on a large area for a larger gap distance and hybrid/hierarchical structures with nanostructures nested on micro-walls for a shorter gap distance. The hierarchically nanostructured surface shows superhydrophobicity with low water adhesion, while the hybrid structured surface becomes become superhydrophobic with high adhesion. These water adhesion tunable surfaces were explored for water transport and evaporation. Additionally, we demonstrated a robust superhydrophobic surface with anti-reflectance over a large area.

Original languageEnglish
Article number874
JournalScientific reports
Volume10
Issue number1
DOIs
Publication statusPublished - 2020 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Single-step plasma-induced hierarchical structures for tunable water adhesion'. Together they form a unique fingerprint.

Cite this