Abstract
In this article we study non-linearly normal smooth projective varieties X ⊂ Pr of deg (X) = codim (X, Pr) + 2. We first give geometric characterizations for X (Theorem 1.1). Indeed X is the image of an isomorphic projection of smooth varieties over(X, ̃) ⊂ Pr + 1 of minimal degree. Also if over(X, ̃) is not the Veronese surface, then there exists a smooth rational normal scroll Y ⊂ Pr which contains X as a divisor linearly equivalent to H + 2 F where H is the hyperplane section of Y and F is a fiber of the projection morphism π : Y → P1. By using these characterizations, (1) we determine all the possible types of Y from the type of over(X, ̃) (Theorem 1.2), and (2) we investigate the relation between the Betti diagram of X and the type of Y (Theorem 1.3). In particular, we clarify the relation between the number of generators of the homogeneous ideal of X and the type of Y. As an application, we construct non-linearly normal examples where the converse to Theorem 1.1 in [D. Eisenbud, M. Green, K. Hulek, S. Popescu, Restriction linear syzygies: Algebra and geometry, Compos. Math. 141 (2005) 1460-1478] fails to hold (Remark 2).
Original language | English |
---|---|
Pages (from-to) | 185-208 |
Number of pages | 24 |
Journal | Journal of Algebra |
Volume | 314 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2007 Aug 1 |
ASJC Scopus subject areas
- Algebra and Number Theory