Solvate Molecule Effects and Unusual 57Fe Mössbauer Line Broadening in the Valence Detrapping of Mixed-Valence [Fe3O(O2CCH3)6(3-Et-py) 3]·S

Chi Cheng Wu, Ho Gyeom Jang, Arnold L. Rheingold, Philipp Gütlich, David N. Hendrickson

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

A new series of mixed-valence μ3-oxo-bridged Fe3O complexes with the composition [Fe3O(O2CCH3)6(3-Et-py) 3]·S, where 3-Et-py is 3-ethylpyridine and the solvate molecule S is either 0.5C6H5CH3 (1), 0.5C6H6 (2), CH3CN (3), or CH3CCl3 (4), is reported. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·0.5C6H5CH3 (1) crystallizes in the orthorhombic space group Fdd2 which at 298 K has a unit cell with a = 22.726(8) Å, b = 35.643(14) Å, c = 20.816(6) Å, and Z = 16. Refinement with 5720 observed [F > 5σ(Fo)] reflections gave R = 0.0337 and Rw = 0.0390. An analysis of the bond lengths in complex 1 shows that it is the most valence-trapped Fe3O complex reported at room temperature. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·CH3CCl3 (4) crystallizes in the triclinic space group P1̄ which at 238 K has a unit cell with a = 12.764(2) A, b = 13.1472(2) Å, c = 15.896(3) Å, α = 78.01(2)°, β= 89.38(2)°, γ = 61.38(1)°, and Z = 2. Refinement with 6264 observed [F > 5σ(Fo)] reflections gave R = 0.0435 and Rw = 0.0583. In this μ3-oxo-bridged complex all three iron ions are inequivalent. Powder X-ray diffraction patterns taken at room temperature show that complexes 1 and 2 are isostructural and that complexes 3 and 4 are isostructural. Variable-temperature 57Fe Mössbauer spectra were collected for all four complexes. The data for complexes 1 and 2 clearly indicate that these two complexes are totally valence trapped. On the other hand, Mössbauer spectra (43-293 K) for complexes 3 and 4 show that these two complexes become valence detrapped at temperatures near room temperature. Two doublets are seen at low temperature and they move together to become a single doublet at ∼293 K. Examination of the line width versus temperature for each of the two components of the two doublets points to a curiosity. The two components of the "FeIII" doublet and the lower-velocity component of the "FeII" doublet do not exhibit any line broadening, whereas the higher velocity "FeII" component shows a surge in line width in the ∼70-150 K range. Possible explanations for these unusual line width responses are discussed.

Original languageEnglish
Pages (from-to)4137-4147
Number of pages11
JournalInorganic Chemistry
Volume35
Issue number14
Publication statusPublished - 1996 Dec 1

Fingerprint

valence
Molecules
Temperature
molecules
Linewidth
room temperature
cells
low speed
temperature
diffraction patterns
examination
Exploratory Behavior
iron
Bond length
X-Ray Diffraction
Powders
Diffraction patterns
Iron
ions
Ions

ASJC Scopus subject areas

  • Inorganic Chemistry

Cite this

Solvate Molecule Effects and Unusual 57Fe Mössbauer Line Broadening in the Valence Detrapping of Mixed-Valence [Fe3O(O2CCH3)6(3-Et-py) 3]·S. / Wu, Chi Cheng; Jang, Ho Gyeom; Rheingold, Arnold L.; Gütlich, Philipp; Hendrickson, David N.

In: Inorganic Chemistry, Vol. 35, No. 14, 01.12.1996, p. 4137-4147.

Research output: Contribution to journalArticle

Wu, Chi Cheng ; Jang, Ho Gyeom ; Rheingold, Arnold L. ; Gütlich, Philipp ; Hendrickson, David N. / Solvate Molecule Effects and Unusual 57Fe Mössbauer Line Broadening in the Valence Detrapping of Mixed-Valence [Fe3O(O2CCH3)6(3-Et-py) 3]·S. In: Inorganic Chemistry. 1996 ; Vol. 35, No. 14. pp. 4137-4147.
@article{2794df0358a2450c84a0a86c8139f450,
title = "Solvate Molecule Effects and Unusual 57Fe M{\"o}ssbauer Line Broadening in the Valence Detrapping of Mixed-Valence [Fe3O(O2CCH3)6(3-Et-py) 3]·S",
abstract = "A new series of mixed-valence μ3-oxo-bridged Fe3O complexes with the composition [Fe3O(O2CCH3)6(3-Et-py) 3]·S, where 3-Et-py is 3-ethylpyridine and the solvate molecule S is either 0.5C6H5CH3 (1), 0.5C6H6 (2), CH3CN (3), or CH3CCl3 (4), is reported. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·0.5C6H5CH3 (1) crystallizes in the orthorhombic space group Fdd2 which at 298 K has a unit cell with a = 22.726(8) {\AA}, b = 35.643(14) {\AA}, c = 20.816(6) {\AA}, and Z = 16. Refinement with 5720 observed [F > 5σ(Fo)] reflections gave R = 0.0337 and Rw = 0.0390. An analysis of the bond lengths in complex 1 shows that it is the most valence-trapped Fe3O complex reported at room temperature. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·CH3CCl3 (4) crystallizes in the triclinic space group P1̄ which at 238 K has a unit cell with a = 12.764(2) A, b = 13.1472(2) {\AA}, c = 15.896(3) {\AA}, α = 78.01(2)°, β= 89.38(2)°, γ = 61.38(1)°, and Z = 2. Refinement with 6264 observed [F > 5σ(Fo)] reflections gave R = 0.0435 and Rw = 0.0583. In this μ3-oxo-bridged complex all three iron ions are inequivalent. Powder X-ray diffraction patterns taken at room temperature show that complexes 1 and 2 are isostructural and that complexes 3 and 4 are isostructural. Variable-temperature 57Fe M{\"o}ssbauer spectra were collected for all four complexes. The data for complexes 1 and 2 clearly indicate that these two complexes are totally valence trapped. On the other hand, M{\"o}ssbauer spectra (43-293 K) for complexes 3 and 4 show that these two complexes become valence detrapped at temperatures near room temperature. Two doublets are seen at low temperature and they move together to become a single doublet at ∼293 K. Examination of the line width versus temperature for each of the two components of the two doublets points to a curiosity. The two components of the {"}FeIII{"} doublet and the lower-velocity component of the {"}FeII{"} doublet do not exhibit any line broadening, whereas the higher velocity {"}FeII{"} component shows a surge in line width in the ∼70-150 K range. Possible explanations for these unusual line width responses are discussed.",
author = "Wu, {Chi Cheng} and Jang, {Ho Gyeom} and Rheingold, {Arnold L.} and Philipp G{\"u}tlich and Hendrickson, {David N.}",
year = "1996",
month = "12",
day = "1",
language = "English",
volume = "35",
pages = "4137--4147",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "14",

}

TY - JOUR

T1 - Solvate Molecule Effects and Unusual 57Fe Mössbauer Line Broadening in the Valence Detrapping of Mixed-Valence [Fe3O(O2CCH3)6(3-Et-py) 3]·S

AU - Wu, Chi Cheng

AU - Jang, Ho Gyeom

AU - Rheingold, Arnold L.

AU - Gütlich, Philipp

AU - Hendrickson, David N.

PY - 1996/12/1

Y1 - 1996/12/1

N2 - A new series of mixed-valence μ3-oxo-bridged Fe3O complexes with the composition [Fe3O(O2CCH3)6(3-Et-py) 3]·S, where 3-Et-py is 3-ethylpyridine and the solvate molecule S is either 0.5C6H5CH3 (1), 0.5C6H6 (2), CH3CN (3), or CH3CCl3 (4), is reported. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·0.5C6H5CH3 (1) crystallizes in the orthorhombic space group Fdd2 which at 298 K has a unit cell with a = 22.726(8) Å, b = 35.643(14) Å, c = 20.816(6) Å, and Z = 16. Refinement with 5720 observed [F > 5σ(Fo)] reflections gave R = 0.0337 and Rw = 0.0390. An analysis of the bond lengths in complex 1 shows that it is the most valence-trapped Fe3O complex reported at room temperature. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·CH3CCl3 (4) crystallizes in the triclinic space group P1̄ which at 238 K has a unit cell with a = 12.764(2) A, b = 13.1472(2) Å, c = 15.896(3) Å, α = 78.01(2)°, β= 89.38(2)°, γ = 61.38(1)°, and Z = 2. Refinement with 6264 observed [F > 5σ(Fo)] reflections gave R = 0.0435 and Rw = 0.0583. In this μ3-oxo-bridged complex all three iron ions are inequivalent. Powder X-ray diffraction patterns taken at room temperature show that complexes 1 and 2 are isostructural and that complexes 3 and 4 are isostructural. Variable-temperature 57Fe Mössbauer spectra were collected for all four complexes. The data for complexes 1 and 2 clearly indicate that these two complexes are totally valence trapped. On the other hand, Mössbauer spectra (43-293 K) for complexes 3 and 4 show that these two complexes become valence detrapped at temperatures near room temperature. Two doublets are seen at low temperature and they move together to become a single doublet at ∼293 K. Examination of the line width versus temperature for each of the two components of the two doublets points to a curiosity. The two components of the "FeIII" doublet and the lower-velocity component of the "FeII" doublet do not exhibit any line broadening, whereas the higher velocity "FeII" component shows a surge in line width in the ∼70-150 K range. Possible explanations for these unusual line width responses are discussed.

AB - A new series of mixed-valence μ3-oxo-bridged Fe3O complexes with the composition [Fe3O(O2CCH3)6(3-Et-py) 3]·S, where 3-Et-py is 3-ethylpyridine and the solvate molecule S is either 0.5C6H5CH3 (1), 0.5C6H6 (2), CH3CN (3), or CH3CCl3 (4), is reported. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·0.5C6H5CH3 (1) crystallizes in the orthorhombic space group Fdd2 which at 298 K has a unit cell with a = 22.726(8) Å, b = 35.643(14) Å, c = 20.816(6) Å, and Z = 16. Refinement with 5720 observed [F > 5σ(Fo)] reflections gave R = 0.0337 and Rw = 0.0390. An analysis of the bond lengths in complex 1 shows that it is the most valence-trapped Fe3O complex reported at room temperature. The complex [Fe3O(O2CCH3)6(3-Et-py) 3]·CH3CCl3 (4) crystallizes in the triclinic space group P1̄ which at 238 K has a unit cell with a = 12.764(2) A, b = 13.1472(2) Å, c = 15.896(3) Å, α = 78.01(2)°, β= 89.38(2)°, γ = 61.38(1)°, and Z = 2. Refinement with 6264 observed [F > 5σ(Fo)] reflections gave R = 0.0435 and Rw = 0.0583. In this μ3-oxo-bridged complex all three iron ions are inequivalent. Powder X-ray diffraction patterns taken at room temperature show that complexes 1 and 2 are isostructural and that complexes 3 and 4 are isostructural. Variable-temperature 57Fe Mössbauer spectra were collected for all four complexes. The data for complexes 1 and 2 clearly indicate that these two complexes are totally valence trapped. On the other hand, Mössbauer spectra (43-293 K) for complexes 3 and 4 show that these two complexes become valence detrapped at temperatures near room temperature. Two doublets are seen at low temperature and they move together to become a single doublet at ∼293 K. Examination of the line width versus temperature for each of the two components of the two doublets points to a curiosity. The two components of the "FeIII" doublet and the lower-velocity component of the "FeII" doublet do not exhibit any line broadening, whereas the higher velocity "FeII" component shows a surge in line width in the ∼70-150 K range. Possible explanations for these unusual line width responses are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0000068795&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000068795&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000068795

VL - 35

SP - 4137

EP - 4147

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 14

ER -