Sonic hedgehog pathway activation is associated with cetuximab resistance and EPHB3 receptor induction in colorectal cancer

Seong Hye Park, Min Jee Jo, Bo Ram Kim, Yoon A. Jeong, Yoo Jin Na, Jung Lim Kim, Soyeon Jeong, Hye Kyeong Yun, Dae Yeong Kim, Bu Gyeom Kim, Sang Hee Kang, Sang Cheul Oh, Dae Hee Lee

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A major problem of colorectal cancer (CRC) targeted therapies is relapse caused by drug resistance. In most cases of CRC, patients develop resistance to anticancer drugs. Cetuximab does not show many of the side effects of other anticancer drugs and improves the survival of patients with metastatic CRC. However, the molecular mechanism of cetuximab resistance is not fully understood. Methods: EPHB3-mediated cetuximab resistance was confirmed by in vitro western blotting, colony-forming assays, WST-1 colorimetric assay, and in vivo xenograft models (n = 7 per group). RNA-seq analysis and receptor tyrosine kinase assays were performed to identify the cetuximab resistance mechanism of EPHB3. All statistical tests were two-sided. Results: The expression of EFNB3, which upregulates the EPHB3 receptor, was shown to be increased via microarray analysis. When resistance to cetuximab was acquired, EPHB3 protein levels increased. Hedgehog signaling, cancer stemness, and epithelial-mesenchymal transition signaling proteins were also increased in the cetuximab-resistant human colon cancer cell line SW48R. Despite cells acquiring resistance to cetuximab, STAT3 was still responsive to EGF and cetuximab treatment. Moreover, inhibition of EPHB3 was associated with decreased STAT3 activity. Co-immunoprecipitation confirmed that EGFR and EPHB3 bind to each other and this binding increases upon resistance acquisition, suggesting that STAT3 is activated by the binding between EGFR and EPHB3. Protein levels of GLI-1, SOX2, and Vimentin, which are affected by STAT3, also increased. Similar results were obtained in samples from patients with CRC. Conclusion: EPHB3 expression is associated with anticancer drug resistance.

Original languageEnglish
Pages (from-to)2235-2251
Number of pages17
JournalTheranostics
Volume9
Issue number8
DOIs
Publication statusPublished - 2019 Jan 1

Keywords

  • Cetuximab resistance
  • Colorectal cancer
  • EPHB3
  • GLI-1

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Fingerprint Dive into the research topics of 'Sonic hedgehog pathway activation is associated with cetuximab resistance and EPHB3 receptor induction in colorectal cancer'. Together they form a unique fingerprint.

  • Cite this

    Park, S. H., Jo, M. J., Kim, B. R., Jeong, Y. A., Na, Y. J., Kim, J. L., Jeong, S., Yun, H. K., Kim, D. Y., Kim, B. G., Kang, S. H., Oh, S. C., & Lee, D. H. (2019). Sonic hedgehog pathway activation is associated with cetuximab resistance and EPHB3 receptor induction in colorectal cancer. Theranostics, 9(8), 2235-2251. https://doi.org/10.7150/thno.30678