Sonophotochemical degradation of bisphenol a with solid catalysts

Myunghee Lim, Younggyu Son, Beomguk Park, Jeehyeong Khim

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


In order to investigate the degradation of bisphenol A (BPA) solution under sono, photo, sonocatalytic, photocatalytic and sonophotocatalytic processes, the BPA concentration and the total organic carbon (TOC) concentration were analyzed. The degradation rate of BPA was higher at high frequency (1 MHz) than at low frequency (300 kHz). At high frequency the acoustic period is shorter, and a high H2O2 concentration is therefore produced in aqueous solutions, which can enhance the degradation rate. The degradation rates of BPA were 0.0060, 0.0258, and 0.0451 min1 under the sonocatalytic (1 MHz), photocatalytic and sonophotocatalytic processes respectively. The combined system of the sonochemical and photocatalytic processes can enhance the degradation rate of BPA compared with individual processes (sono and photocatalytic processes). The order of degradation of BPA (CuO > ZnO ≈ TiO2) and TOC (TiO2 > ZnO > CuO) differed for each of the three types of catalysts. The separation characteristics of catalysts were dissimilar for each of the two frequencies.

Original languageEnglish
Article number07HE06
JournalJapanese journal of applied physics
Issue number7 PART 2
Publication statusPublished - 2010 Jul

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Sonophotochemical degradation of bisphenol a with solid catalysts'. Together they form a unique fingerprint.

Cite this