TY - GEN
T1 - Sparse multi-view task-centralized learning for ASD diagnosis
AU - Wang, Jun
AU - Wang, Qian
AU - Wang, Shitong
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2017, Springer International Publishing AG.
PY - 2017
Y1 - 2017
N2 - It is challenging to derive early diagnosis from neuroimaging data for autism spectrum disorder (ASD). In this work, we propose a novel sparse multi-view task-centralized (Sparse-MVTC) classification method for computer-assisted diagnosis of ASD. In particular, since ASD is known to be age- and sex-related, we partition all subjects into different groups of age/sex, each of which can be treated as a classification task to learn. Meanwhile, we extract multi-view features from functional magnetic resonance imaging to describe the brain connectivity of each subject. This formulates a multi-view multi-task sparse learning problem and it is solved by a novel Sparse-MVTC method. Specifically, we treat each task as a central task and other tasks as the auxiliary ones. We then consider the task-task and view-view relations between the central task and each auxiliary task. We can use this task-centralized strategy for a highly efficient solution. The comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC method can significantly outperform the existing classification methods in ASD diagnosis.
AB - It is challenging to derive early diagnosis from neuroimaging data for autism spectrum disorder (ASD). In this work, we propose a novel sparse multi-view task-centralized (Sparse-MVTC) classification method for computer-assisted diagnosis of ASD. In particular, since ASD is known to be age- and sex-related, we partition all subjects into different groups of age/sex, each of which can be treated as a classification task to learn. Meanwhile, we extract multi-view features from functional magnetic resonance imaging to describe the brain connectivity of each subject. This formulates a multi-view multi-task sparse learning problem and it is solved by a novel Sparse-MVTC method. Specifically, we treat each task as a central task and other tasks as the auxiliary ones. We then consider the task-task and view-view relations between the central task and each auxiliary task. We can use this task-centralized strategy for a highly efficient solution. The comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC method can significantly outperform the existing classification methods in ASD diagnosis.
UR - http://www.scopus.com/inward/record.url?scp=85029715066&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-67389-9_19
DO - 10.1007/978-3-319-67389-9_19
M3 - Conference contribution
AN - SCOPUS:85029715066
SN - 9783319673882
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 159
EP - 167
BT - Machine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Proceedings
A2 - Shi, Yinghuan
A2 - Suk, Heung-Il
A2 - Suzuki, Kenji
A2 - Wang, Qian
PB - Springer Verlag
T2 - 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
Y2 - 10 September 2017 through 10 September 2017
ER -