Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions

Mahtab Ahmad, Sang Soo Lee, Jung Eun Lim, Sung Eun Lee, Ju Sik Cho, Deok Hyun Moon, Yohey Hashimoto, Yong Sik Ok

Research output: Contribution to journalArticle

141 Citations (Scopus)

Abstract

Mussel shell (MS), cow bone (CB) and biochar (BC) were selected to immobilize metals in an army firing range soil. Amendments were applied at 5% (wt) and their efficacies were determined after 175d. For metal phytoavailability test, maize (Zea mays L.) plants were cultivated for 3weeks. Results showed that all amendments decreased the exchangeable Pb by up to 99% in planted/unplanted soils. Contrarily, exchangeable Sb were increased in the MS- and CB-amended soils. The rise in soil pH (~1 unit) by the amendments affected Pb and Sb mobility in soils. Bioavailability of Pb to maize was reduced by up to 71% in the amended soils. The Sb uptake to maize was decreased by up to 53.44% in the BC-amended soil. Sequential chemical extractions showed the transformation of easily available Pb to stable residual form with the amendment treatments. Scanning electron microscopic elemental dot mapping revealed the Pb association with Al and Si in the MS-amended soil and that with P in the CB- and BC-amended soils. Additionally, the extended X-ray absorption fine structure spectroscopic analysis indicated the transformation of organic bound Pb in unamended control soil to relatively more stable Pb-hydroxide (Ksp=10-17.1), chloropyromorphite (Ksp=10-84.4) and Pb-phosphate (Ksp=10-23.8) in soils amended with MS, CB and BC, respectively. Application of BC was the best in decreasing the phytoavailability of Pb and Sb in the studied army firing range soil.

Original languageEnglish
Pages (from-to)433-441
Number of pages9
JournalChemosphere
Volume95
DOIs
Publication statusPublished - 2014 Jan

Keywords

  • Black carbon
  • Charcoal
  • Phytoavailability
  • Shooting range
  • Slow pyrolysis
  • Soil remediation

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Chemistry(all)
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions'. Together they form a unique fingerprint.

  • Cite this