TY - GEN
T1 - Spherical U-Net on Cortical Surfaces
T2 - 26th International Conference on Information Processing in Medical Imaging, IPMI 2019
AU - Zhao, Fenqiang
AU - Xia, Shunren
AU - Wu, Zhengwang
AU - Duan, Dingna
AU - Wang, Li
AU - Lin, Weili
AU - Gilmore, John H.
AU - Shen, Dinggang
AU - Li, Gang
N1 - Funding Information:
Acknowledgements. This work was partially supported by NIH grants (MH107815, MH108914, MH109773, MH116225, and MH117943) and China Scholarship Council.
Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
PY - 2019
Y1 - 2019
N2 - Convolutional Neural Networks (CNNs) have been providing the state-of-the-art performance for learning-related problems involving 2D/3D images in Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have a spherical topology in a manifold space, e.g., brain cortical or subcortical surfaces represented by triangular meshes, with large inter-subject and intra-subject variations in vertex number and local connectivity. Hence, there is no consistent neighborhood definition and thus no straightforward convolution/transposed convolution operations for cortical/subcortical surface data. In this paper, by leveraging the regular and consistent geometric structure of the resampled cortical surface mapped onto the spherical space, we propose a novel convolution filter analogous to the standard convolution on the image grid. Accordingly, we develop corresponding operations for convolution, pooling, and transposed convolution for spherical surface data and thus construct spherical CNNs. Specifically, we propose the Spherical U-Net architecture by replacing all operations in the standard U-Net with their spherical operation counterparts. We then apply the Spherical U-Net to two challenging and neuroscientifically important tasks in infant brains: cortical surface parcellation and cortical attribute map development prediction. Both applications demonstrate the competitive performance in the accuracy, computational efficiency, and effectiveness of our proposed Spherical U-Net, in comparison with the state-of-the-art methods.
AB - Convolutional Neural Networks (CNNs) have been providing the state-of-the-art performance for learning-related problems involving 2D/3D images in Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have a spherical topology in a manifold space, e.g., brain cortical or subcortical surfaces represented by triangular meshes, with large inter-subject and intra-subject variations in vertex number and local connectivity. Hence, there is no consistent neighborhood definition and thus no straightforward convolution/transposed convolution operations for cortical/subcortical surface data. In this paper, by leveraging the regular and consistent geometric structure of the resampled cortical surface mapped onto the spherical space, we propose a novel convolution filter analogous to the standard convolution on the image grid. Accordingly, we develop corresponding operations for convolution, pooling, and transposed convolution for spherical surface data and thus construct spherical CNNs. Specifically, we propose the Spherical U-Net architecture by replacing all operations in the standard U-Net with their spherical operation counterparts. We then apply the Spherical U-Net to two challenging and neuroscientifically important tasks in infant brains: cortical surface parcellation and cortical attribute map development prediction. Both applications demonstrate the competitive performance in the accuracy, computational efficiency, and effectiveness of our proposed Spherical U-Net, in comparison with the state-of-the-art methods.
KW - Convolutional Neural Network
KW - Cortical surface
KW - Parcellation
KW - Prediction
KW - Spherical U-Net
UR - http://www.scopus.com/inward/record.url?scp=85066115947&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-20351-1_67
DO - 10.1007/978-3-030-20351-1_67
M3 - Conference contribution
AN - SCOPUS:85066115947
SN - 9783030203504
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 855
EP - 866
BT - Information Processing in Medical Imaging - 26th International Conference, IPMI 2019, Proceedings
A2 - Gee, James C.
A2 - Yushkevich, Paul A.
A2 - Bao, Siqi
A2 - Chung, Albert C.S.
PB - Springer Verlag
Y2 - 2 June 2019 through 7 June 2019
ER -