Stimulatory effect of vascular endothelial growth factor on proliferation and migration of porcine trophectoderm cells and their regulation by the phosphatidylinositol-3-kinase-AKT and mitogen-activated protein kinase cell signaling pathways

Wooyoung Jeong, Jinyoung Kim, Fuller W. Bazer, Gwonhwa Song

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways.

Original languageEnglish
Article numberArticle 50
JournalBiology of Reproduction
Volume90
Issue number3
DOIs
Publication statusPublished - 2014 Jan 1

Fingerprint

Phosphatidylinositol 3-Kinase
Mitogen-Activated Protein Kinases
Vascular Endothelial Growth Factor A
Swine
Phosphatidylinositol 3-Kinases
Vascular Endothelial Growth Factor Receptor-1
Vascular Endothelial Growth Factor Receptor
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Phosphorylation
Blood Vessels
Extraembryonic Membranes
Vascular Endothelial Growth Factor Receptor-2
Pregnancy
Messenger RNA
Estrous Cycle
Angiogenesis Inducing Agents
Capillary Permeability
p38 Mitogen-Activated Protein Kinases
Sirolimus
Growth and Development

Keywords

  • Migration
  • Pig
  • Proliferation
  • Trophoblast
  • Vascular endothelial growth factor

ASJC Scopus subject areas

  • Cell Biology

Cite this

@article{40e02667ee8f4cb5ba7c7a76d36615fe,
title = "Stimulatory effect of vascular endothelial growth factor on proliferation and migration of porcine trophectoderm cells and their regulation by the phosphatidylinositol-3-kinase-AKT and mitogen-activated protein kinase cell signaling pathways",
abstract = "Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways.",
keywords = "Migration, Pig, Proliferation, Trophoblast, Vascular endothelial growth factor",
author = "Wooyoung Jeong and Jinyoung Kim and Bazer, {Fuller W.} and Gwonhwa Song",
year = "2014",
month = "1",
day = "1",
doi = "10.1095/biolreprod.113.115873",
language = "English",
volume = "90",
journal = "Biology of Reproduction",
issn = "0006-3363",
publisher = "Society for the Study of Reproduction",
number = "3",

}

TY - JOUR

T1 - Stimulatory effect of vascular endothelial growth factor on proliferation and migration of porcine trophectoderm cells and their regulation by the phosphatidylinositol-3-kinase-AKT and mitogen-activated protein kinase cell signaling pathways

AU - Jeong, Wooyoung

AU - Kim, Jinyoung

AU - Bazer, Fuller W.

AU - Song, Gwonhwa

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways.

AB - Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways.

KW - Migration

KW - Pig

KW - Proliferation

KW - Trophoblast

KW - Vascular endothelial growth factor

UR - http://www.scopus.com/inward/record.url?scp=84899939793&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84899939793&partnerID=8YFLogxK

U2 - 10.1095/biolreprod.113.115873

DO - 10.1095/biolreprod.113.115873

M3 - Article

C2 - 24451985

AN - SCOPUS:84899939793

VL - 90

JO - Biology of Reproduction

JF - Biology of Reproduction

SN - 0006-3363

IS - 3

M1 - Article 50

ER -