Stomata-Inspired Photomechanical Ion Nanochannels Modified by Azobenzene Composites

Kyoung Yong Chun, Young Jun Son, Sunghwan Jo, Chang-Soo Han

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

A low-powered and highly selective photomechanical sensor system mimicking stomata in the epidermis of leaves harvested from nature is demonstrated. This device uses a light-responsive composite consisting of 4-amino-1,1'-azobenzene-3,4'-disulfonic acid monosodium salt (AZO) and poly(diallyldimethylammonium chloride) (PDDA) coated on a membrane with tens of nanometer-size pores. The ionic current change through the pore channels as a function of pore size variation is then measured. The tran-cis isomerism of AZO-PDDA during light irradiation and the operation mechanism of photomechanical ion channel sensor are discussed and analyzed using UV-vis spectroscopy and atomic force microscopy analysis. It presents the discriminative current levels to the different light wavelengths. The response time of the photoreceptor is about 0.2 s and it consumes very low operating power (≈15 nW) at 0.1 V bias. In addition, it is found that the change of the pore diameter during the light irradiation is due to the photomechanical effect, which is capable of distinguishing light intensity and wavelength.

Original languageEnglish
JournalSmall
DOIs
Publication statusAccepted/In press - 2018 Jan 1

    Fingerprint

Keywords

  • Azobenzene
  • Ion channels
  • Photomechanical sensors
  • Pore actuation
  • Stomata

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Engineering (miscellaneous)

Cite this