TY - JOUR
T1 - Stress response circuitry hypoactivation related to hormonal dysfunction in women with major depression
AU - Holsen, Laura M.
AU - Spaeth, Sarah B.
AU - Lee, Jong Hwan
AU - Ogden, Lauren A.
AU - Klibanski, Anne
AU - Whitfield-Gabrieli, Susan
AU - Goldstein, Jill M.
N1 - Funding Information:
Funding for this work was provided by ORWH-NIMH Grant P50 MH082679 and some pilot funds for fMRI scans from NIH NCRR-GCRC M01 RR02635 at Brigham and Women's Hospital's General Clinical Research Center. The NIMH had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.
Funding Information:
This work was supported by grants from the National Institute of Health to J.M.G. ORWH-NIMH P50 MH082679 and pilot funds for fMRI scans from NIH NCRR-GCRC M01 RR02635 at Brigham and Women's Hospital's General Clinical Research Center . We thank Drs. Tamara Gersh, Seung-Schik Yoo, and Matthew Jerram for help in earlier phases of the study, Harlyn Aizley, M.Ed. for clinical interviewing of the subjects, and Jo-Ann Donatelli, Ph.D. for her contributions to diagnostic review. We also appreciate the input of Stuart Tobet, Ph.D. and Robert Handa, Ph.D. (Co-PIs on ORWH-NIMH P50 MH082679) regarding their comments on earlier drafts of the manuscript.
PY - 2011/6
Y1 - 2011/6
N2 - Background: Women have approximately twice the risk of major depressive disorder (MDD) than men, yet this difference remains largely unexplained. Previous MDD research suggests high rates of endocrine dysfunction, which may be related to deficits in brain activity in stress response circuitry [hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC)]. This functional magnetic resonance imaging (fMRI) study investigated the relationship between hypothalamic-pituitary-gonadal (HPG)-axis hormones and stress response circuitry dysfunction in MDD in women. Methods: During the late follicular/midcycle phase of the menstrual cycle, female participants (10 with extensive histories of MDD, in remission, 10 healthy controls) were scanned while viewing negative and neutral arousal pictures. Group differences in blood oxygen-level dependent (BOLD) signal changes were analyzed using SPM2. Baseline gonadal hormones included estradiol, progesterone, and testosterone. Results: fMRI results showed greater BOLD signal intensity changes in controls versus MDD in hypothalamus, amygdala, hippocampus, OFC, ACC, and subgenual ACC, findings unrelated to medication status. MDD women had a lower serum estradiol and higher serum progesterone compared to controls. Hypoactivations in hypothalamus, subgenual ACC, amygdala and OFC in MDD were associated with low estradiol and high progesterone. Limitations: Generalizability of our findings is limited by small sample size and restriction to females, although this did not affect the internal validity of the results. Conclusions: Hypoactivation of the stress response circuitry in MDD women is associated with dysregulation of the HPG-axis. Associations between brain activity deficits and hormonal disruption in MDD may ultimately contribute to understanding sex differences in MDD.
AB - Background: Women have approximately twice the risk of major depressive disorder (MDD) than men, yet this difference remains largely unexplained. Previous MDD research suggests high rates of endocrine dysfunction, which may be related to deficits in brain activity in stress response circuitry [hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC)]. This functional magnetic resonance imaging (fMRI) study investigated the relationship between hypothalamic-pituitary-gonadal (HPG)-axis hormones and stress response circuitry dysfunction in MDD in women. Methods: During the late follicular/midcycle phase of the menstrual cycle, female participants (10 with extensive histories of MDD, in remission, 10 healthy controls) were scanned while viewing negative and neutral arousal pictures. Group differences in blood oxygen-level dependent (BOLD) signal changes were analyzed using SPM2. Baseline gonadal hormones included estradiol, progesterone, and testosterone. Results: fMRI results showed greater BOLD signal intensity changes in controls versus MDD in hypothalamus, amygdala, hippocampus, OFC, ACC, and subgenual ACC, findings unrelated to medication status. MDD women had a lower serum estradiol and higher serum progesterone compared to controls. Hypoactivations in hypothalamus, subgenual ACC, amygdala and OFC in MDD were associated with low estradiol and high progesterone. Limitations: Generalizability of our findings is limited by small sample size and restriction to females, although this did not affect the internal validity of the results. Conclusions: Hypoactivation of the stress response circuitry in MDD women is associated with dysregulation of the HPG-axis. Associations between brain activity deficits and hormonal disruption in MDD may ultimately contribute to understanding sex differences in MDD.
KW - Depression
KW - HPG
KW - Hormones
KW - Stress
KW - Women's mental health
KW - fMRI
UR - http://www.scopus.com/inward/record.url?scp=79955878532&partnerID=8YFLogxK
U2 - 10.1016/j.jad.2010.11.024
DO - 10.1016/j.jad.2010.11.024
M3 - Article
C2 - 21183223
AN - SCOPUS:79955878532
SN - 0165-0327
VL - 131
SP - 379
EP - 387
JO - Journal of Affective Disorders
JF - Journal of Affective Disorders
IS - 1-3
ER -