TY - JOUR
T1 - Structural and biochemical characterization of FabK from Thermotoga maritima
AU - Ha, Byung Hak
AU - Shin, Sang Chul
AU - Moon, Jin Ho
AU - Keum, Gyochang
AU - Kim, Chan Wha
AU - Kim, Eunice Eun Kyeong
PY - 2017/1/22
Y1 - 2017/1/22
N2 - TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid. One FMN is bound between the two domains with the phosphate making intricate hydrogen bonds with protein and three tightly bound water molecules, and the isoalloxazine ring packed against the side chains of Met22 and Met276. The structure is almost identical to that of FabK (enoyl-acyl carrier protein (ACP) reductase, ENR II), a key enzyme in bacterial type II fatty-acid biosynthesis that catalyzes the final step in each elongation cycle; and the enzymatic activity confirms that TM0800 is an ENR. Enzymatic activity was almost completely abolished when the helices connecting the barrel and the lid were deleted. Also, the Met276Ala and Ser280Ala mutants showed a significant reduction in enzymatic activity. The crystal structure of Met276Ala mutant at 1.9 Å resolution showed an absence of FMN suggesting that FMN plays a role in catalysis, and Met276 is important in positioning FMN. TmFabK exists as a dimer in both solution and crystal. Together this study provides molecular basis for the catalytic activity of FabK.
AB - TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid. One FMN is bound between the two domains with the phosphate making intricate hydrogen bonds with protein and three tightly bound water molecules, and the isoalloxazine ring packed against the side chains of Met22 and Met276. The structure is almost identical to that of FabK (enoyl-acyl carrier protein (ACP) reductase, ENR II), a key enzyme in bacterial type II fatty-acid biosynthesis that catalyzes the final step in each elongation cycle; and the enzymatic activity confirms that TM0800 is an ENR. Enzymatic activity was almost completely abolished when the helices connecting the barrel and the lid were deleted. Also, the Met276Ala and Ser280Ala mutants showed a significant reduction in enzymatic activity. The crystal structure of Met276Ala mutant at 1.9 Å resolution showed an absence of FMN suggesting that FMN plays a role in catalysis, and Met276 is important in positioning FMN. TmFabK exists as a dimer in both solution and crystal. Together this study provides molecular basis for the catalytic activity of FabK.
KW - Biochemical characterization
KW - Crystal structure
KW - Enoyl-acyl carrier protein (ACP) reductase
KW - FabK
UR - http://www.scopus.com/inward/record.url?scp=85007415430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007415430&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2016.11.141
DO - 10.1016/j.bbrc.2016.11.141
M3 - Article
C2 - 27908729
AN - SCOPUS:85007415430
SN - 0730-6512
VL - 482
SP - 968
EP - 974
JO - Zeitschrift für Induktive Abstammungs- und Vererbungslehre
JF - Zeitschrift für Induktive Abstammungs- und Vererbungslehre
IS - 4
ER -