Structural heterogeneity of the mammalian polycomb repressor complex in immune regulation

Seok Jin Kang, Taehoon Chun

Research output: Contribution to journalReview article

Abstract

Epigenetic regulation is mainly mediated by enzymes that can modify the structure of chromatin by altering the structure of DNA or histones. Proteins involved in epigenetic processes have been identified to study the detailed molecular mechanisms involved in the regulation of specific mRNA expression. Evolutionarily well-conserved polycomb group (PcG) proteins can function as transcriptional repressors by the trimethylation of histone H3 at the lysine 27 residue (H3K27me3) and the monoubiquitination of histone H2A at the lysine 119 residue (H2AK119ub). PcG proteins form two functionally distinct protein complexes: polycomb repressor complex 1 (PRC1) and PRC2. In mammals, the structural heterogeneity of each PRC complex is dramatically increased by several paralogs of its subunit proteins. Genetic studies with transgenic mice along with RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses might be helpful for defining the cell-specific functions of paralogs of PcG proteins. Here, we summarize current knowledge about the immune regulatory role of PcG proteins related to the compositional diversity of each PRC complex and introduce therapeutic drugs that target PcG proteins in hematopoietic malignancy.

Original languageEnglish
Pages (from-to)1004-1015
Number of pages12
JournalExperimental and Molecular Medicine
Volume52
Issue number7
DOIs
Publication statusPublished - 2020 Jul 1

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Clinical Biochemistry

Fingerprint Dive into the research topics of 'Structural heterogeneity of the mammalian polycomb repressor complex in immune regulation'. Together they form a unique fingerprint.

  • Cite this