Abstract
The T1-weighted and T2-weighted MRI contrasts of the infant brain evolve drastically during the first year of life. This poses significant challenges to inter- and intra-subject registration, which is key to subsequent statistical analyses. Existing registration methods that do not consider temporal contrast changes are ineffective for infant brain MRI data. To address this problem, we present in this paper a method for deformable registration of infant brain MRI. The key advantage of our method is threefold: (i) To deal with appearance changes, registration is performed based on segmented tissue maps instead of image intensity. Segmentation is performed by using an infant-centric algorithm previously developed by our group. (ii) Registration is carried out with respect to both cortical surfaces and volumetric tissue maps, thus allowing precise alignment of both cortical and subcortical structures. (iii) A dynamic elasticity model is utilized to allow large non-linear deformation. Experimental results in comparison with well-established registration methods indicate that our method yields superior accuracy in both cortical and subcortical alignment.
Original language | English |
---|---|
Article number | 101540 |
Journal | Medical Image Analysis |
Volume | 58 |
DOIs | |
Publication status | Published - 2019 Dec |
Keywords
- Infant magnetic resonance imaging
- Joint cortical surface and volumetric registration
ASJC Scopus subject areas
- Radiological and Ultrasound Technology
- Radiology Nuclear Medicine and imaging
- Computer Vision and Pattern Recognition
- Health Informatics
- Computer Graphics and Computer-Aided Design