Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions

Ki Wan Bong, Jae Jung Kim, Hansang Cho, Eugene Lim, Patrick S. Doyle, Daniel Irimia

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-l-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.

Original languageEnglish
Pages (from-to)13165-13171
Number of pages7
JournalLangmuir
Volume31
Issue number48
DOIs
Publication statusPublished - 2015 Nov 6

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions'. Together they form a unique fingerprint.

Cite this