### Abstract

A systematic method is presented to construct multicomponent optical solitons for the system governed by the vector nonlinear Schrödinger equation. By solving the characteristic eigenvalue problem, we obtain a general n-component soliton solution in the presence of nonzero background fields. In the two-component case, we show that this general solution not only includes previously known soliton solutions, e.g., bright-bright, dark-bright, dark-dark pair solitons for self-focusing or self-defocusing media, but depending on the choice of parameters it also exhibits different types of soliton solution. In particular, we obtain a general dark-bright type solution in a self-focusing medium, which describes a breakup of a dark-bright pair into another dark-bright pair and an "oscillating" soliton, or the reverse fusing process. In the case of a self-defocusing medium, we generalize the previously known static dark-dark pair and show that a general dark-dark pair is non-static and oscillates periodically through exchanging energies between two components. It is shown that the static case arises when the complex soliton parameter is restricted to a pure imaginary number. We address about the criterion for testing singularity in a general solution in terms of solution parameters, and also about the non-Abelian SU(n) symmetry of the system.

Original language | English |
---|---|

Pages (from-to) | 3093-3106 |

Number of pages | 14 |

Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |

Volume | 61 |

Issue number | 3 |

Publication status | Published - 2000 Mar 1 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Mathematical Physics
- Physics and Astronomy(all)
- Condensed Matter Physics
- Statistical and Nonlinear Physics

### Cite this

*Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics*,

*61*(3), 3093-3106.

**Systematic construction of multicomponent optical solitons.** / Park, Q Han; Shin, H. J.

Research output: Contribution to journal › Article

*Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics*, vol. 61, no. 3, pp. 3093-3106.

}

TY - JOUR

T1 - Systematic construction of multicomponent optical solitons

AU - Park, Q Han

AU - Shin, H. J.

PY - 2000/3/1

Y1 - 2000/3/1

N2 - A systematic method is presented to construct multicomponent optical solitons for the system governed by the vector nonlinear Schrödinger equation. By solving the characteristic eigenvalue problem, we obtain a general n-component soliton solution in the presence of nonzero background fields. In the two-component case, we show that this general solution not only includes previously known soliton solutions, e.g., bright-bright, dark-bright, dark-dark pair solitons for self-focusing or self-defocusing media, but depending on the choice of parameters it also exhibits different types of soliton solution. In particular, we obtain a general dark-bright type solution in a self-focusing medium, which describes a breakup of a dark-bright pair into another dark-bright pair and an "oscillating" soliton, or the reverse fusing process. In the case of a self-defocusing medium, we generalize the previously known static dark-dark pair and show that a general dark-dark pair is non-static and oscillates periodically through exchanging energies between two components. It is shown that the static case arises when the complex soliton parameter is restricted to a pure imaginary number. We address about the criterion for testing singularity in a general solution in terms of solution parameters, and also about the non-Abelian SU(n) symmetry of the system.

AB - A systematic method is presented to construct multicomponent optical solitons for the system governed by the vector nonlinear Schrödinger equation. By solving the characteristic eigenvalue problem, we obtain a general n-component soliton solution in the presence of nonzero background fields. In the two-component case, we show that this general solution not only includes previously known soliton solutions, e.g., bright-bright, dark-bright, dark-dark pair solitons for self-focusing or self-defocusing media, but depending on the choice of parameters it also exhibits different types of soliton solution. In particular, we obtain a general dark-bright type solution in a self-focusing medium, which describes a breakup of a dark-bright pair into another dark-bright pair and an "oscillating" soliton, or the reverse fusing process. In the case of a self-defocusing medium, we generalize the previously known static dark-dark pair and show that a general dark-dark pair is non-static and oscillates periodically through exchanging energies between two components. It is shown that the static case arises when the complex soliton parameter is restricted to a pure imaginary number. We address about the criterion for testing singularity in a general solution in terms of solution parameters, and also about the non-Abelian SU(n) symmetry of the system.

UR - http://www.scopus.com/inward/record.url?scp=0000879449&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000879449&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000879449

VL - 61

SP - 3093

EP - 3106

JO - Physical Review E

JF - Physical Review E

SN - 2470-0045

IS - 3

ER -