Template-free synthesis of monodispersed Y 3Al 5O 12:Ce 3+ nanosphere phosphor

Hee Suk Roh, Dong Hoe Kim, Ik Jae Park, Hee Jo Song, Seyoon Hur, Dong Wan Kim, Kug Sun Hong

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Monodispersed Ce 3+-doped Y 3Al 5O 12 (YAG:Ce 3+) nanospheres were synthesized through forced hydrolysis using a urea method, followed by thermal calcination processes, and their luminescence properties were examined. The crystallization of the YAG:Ce 3+ phase and morphological evolutions after subsequent heat treatment were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Energy dispersive spectroscopy (EDS) analysis revealed that the amorphous aluminum oxide layer played an important role in preventing necking between the particles during heat treatment. As a result, stand-alone YAG:Ce 3+ nanospheres with an amorphous aluminum oxide layer shell were synthesized while maintaining monodispersity with an average particle diameter of about 33 nm. These nanospheres had a dense structure and smooth surface with relatively good crystallinity after annealing at 1075 °C. They absorbed light efficiently in the visible region of 400-500 nm, and showed a single broadband emission peak at 536 nm with a luminescence quantum efficiency (QE) of 33% and relatively good photostability.

Original languageEnglish
Pages (from-to)12275-12280
Number of pages6
JournalJournal of Materials Chemistry
Volume22
Issue number24
DOIs
Publication statusPublished - 2012 Jun 28
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Template-free synthesis of monodispersed Y 3Al 5O 12:Ce 3+ nanosphere phosphor'. Together they form a unique fingerprint.

Cite this