TY - GEN
T1 - Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI
AU - Yao, Dongren
AU - Sui, Jing
AU - Yang, Erkun
AU - Yap, Pew Thian
AU - Shen, Dinggang
AU - Liu, Mingxia
N1 - Funding Information:
supported by NIH grant (No.
Funding Information:
This work was partly supported by NIH grant (No. MH108560).
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.
AB - Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.
UR - http://www.scopus.com/inward/record.url?scp=85092696222&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59861-7_1
DO - 10.1007/978-3-030-59861-7_1
M3 - Conference contribution
AN - SCOPUS:85092696222
SN - 9783030598600
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 1
EP - 10
BT - Machine Learning in Medical Imaging - 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Proceedings
A2 - Liu, Mingxia
A2 - Lian, Chunfeng
A2 - Yan, Pingkun
A2 - Cao, Xiaohuan
PB - Springer Science and Business Media Deutschland GmbH
T2 - 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 4 October 2020
ER -