### Abstract

Let L/F be a finite separable extension of Henselian valued fields with same residue fields L̄ = F̄. Let D be an inertially split division algebra over L, and let ^{C} D be the underlying division algebra of the corestriction cor_{L/F} (D) of D. We show that the index ind( ^{C} D) of ^{C} D divides [Z(D̄) : Z(^{C} D)̄] · ind(D), where Z(D̄) is the center of the residue division ring D̄.

Original language | English |
---|---|

Pages (from-to) | 279-284 |

Number of pages | 6 |

Journal | Journal of the Korean Mathematical Society |

Volume | 34 |

Issue number | 2 |

Publication status | Published - 1997 Dec 1 |

### Fingerprint

### Keywords

- Corestriction
- Division Algebras
- Henselian valuation

### ASJC Scopus subject areas

- Mathematics(all)