Abstract
Let L/F be a finite separable extension of Henselian valued fields with same residue fields L̄ = F̄. Let D be an inertially split division algebra over L, and let C D be the underlying division algebra of the corestriction corL/F (D) of D. We show that the index ind( C D) of C D divides [Z(D̄) : Z(C D)̄] · ind(D), where Z(D̄) is the center of the residue division ring D̄.
Original language | English |
---|---|
Pages (from-to) | 279-284 |
Number of pages | 6 |
Journal | Journal of the Korean Mathematical Society |
Volume | 34 |
Issue number | 2 |
Publication status | Published - 1997 |
Keywords
- Corestriction
- Division Algebras
- Henselian valuation
ASJC Scopus subject areas
- Mathematics(all)