The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points

Hisataka Kobayashi, Nhat Le, In Sook Kim, Meyoung-Kon Kim, Jae Eun Pie, Debra Drumm, David S. Paik, Thomas A. Waldmann, Chang H. Paik, Jorge A. Carrasquillo

Research output: Contribution to journalArticle

67 Citations (Scopus)

Abstract

To evaluate a method for preventing the nephrotoxicity caused by the high renal accumulation of radiolabeled or toxin-conjugated small immunoproteins used for cancer therapy, we conjugated humanized anti-Tac Fab fragments with various numbers of glycolate molecules [glycolated Fab fragments (glyco-Fabs)] and separated the conjugates by means of ion-exchange columns into three fractions, depending on their isoelectric points (pIs). We evaluated the biodistribution, pharmacokinetics, and catabolism in normal nude mice of nonglycolated Fab (pI ≥ 9.3) and three different preparations of glyco-Fab, including strongly anionic glyco-Fab (sa-glyco-Fab: pI ≤ 4.5), mildly anionic glyco-Fab (pI = 4.5-7), and mildly cationic glyco-Fab (pI = 7- 9.3). In addition, the biodistributions of 125I-labeled sa-glyco-Fab and 13I-labeled nonglycolated Fab were evaluated in normal nude mice coinjected with 50 mg of L-lysine and/or 1 μg of furosemide and in a control group without coinjection. We then evaluated the serial biodistribution of 125I- labeled sa-glyco-Fab (4 μCi/1 μg) and 131I-labeled nonglycolated Fab (5 μCi/1 μg) in Tac antigen-positive (ATAC4) and -negative (A431) tumor- bearing nude mice with s.c. tumor xenografts derived from Tac antigen- positive ATAC4 cells and receptor-negative A431 cells. These animals were coinjected with 30 mg of lysine i.v. and 30 mg of lysine i.p. 15 min after the radiolabeled Fab injection. To evaluate the biodistribution data and study scintigraphic imaging, we performed serial scintigraphy on normal and tumor-bearing mice with all four 131I-labeled preparations. 125I- labeled mildly cationic glyco-Fab and 131I-labeled nonglycolated Fab had similar distributions, except in the kidney. However, both 125I-labeled anionic glyco-Fab preparations showed significantly different distributions from both cationic Fabs in the blood, liver, lung, and spleen. Renal accumulation of all four radiolabeled Fab preparations increased significantly as the pI increased (P < 0.01). In addition, the intact fraction of Fab excreted into urine increased as pI decreased. Therefore, the glomerular filtration depended on whether the charge on the Fab was positive or negative. The proportion of Fab reabsorbed by the proximal tubules increased as pI increased. 125I-labeled sa-glyco-Fab and 125I-labeled mildly anionic glyco-Fab showed a similar distribution in the blood and all organs except the kidney. Lysine led to an additional blocking effect on proximal tubular uptake of both sa-glyco-Fab and nonglycolated Fab. Addition of furosemide yielded only a small effect when used with lysine. With lysine, the sa-glyco-Fab:nonglycolated Fab estimated integral radioactivity ratios were 4.7 and 0.7 in the ATAC4 tumor and in the kidney, respectively. The use of anionic fragments, which may be used in conjunction with lysine, represents a promising approach that may help decrease the renal toxicity of other small fragments, the molecular weights of which range from M(r) 40,000 to 70,000, and, thereby, allow higher doses of radiation to the tumor.

Original languageEnglish
Pages (from-to)422-430
Number of pages9
JournalCancer Research
Volume59
Issue number2
Publication statusPublished - 1999 Jan 16
Externally publishedYes

Fingerprint

Isoelectric Point
Lysine
Pharmacokinetics
Kidney
Nude Mice
Neoplasms
Immunoglobulin Fab Fragments
glycolic acid
Furosemide
Immunoproteins
Antigens
Ion Exchange
Heterografts
Radionuclide Imaging
Radioactivity
Spleen
Molecular Weight
Urine
Radiation
Lung

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Kobayashi, H., Le, N., Kim, I. S., Kim, M-K., Pie, J. E., Drumm, D., ... Carrasquillo, J. A. (1999). The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. Cancer Research, 59(2), 422-430.

The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. / Kobayashi, Hisataka; Le, Nhat; Kim, In Sook; Kim, Meyoung-Kon; Pie, Jae Eun; Drumm, Debra; Paik, David S.; Waldmann, Thomas A.; Paik, Chang H.; Carrasquillo, Jorge A.

In: Cancer Research, Vol. 59, No. 2, 16.01.1999, p. 422-430.

Research output: Contribution to journalArticle

Kobayashi, H, Le, N, Kim, IS, Kim, M-K, Pie, JE, Drumm, D, Paik, DS, Waldmann, TA, Paik, CH & Carrasquillo, JA 1999, 'The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points', Cancer Research, vol. 59, no. 2, pp. 422-430.
Kobayashi, Hisataka ; Le, Nhat ; Kim, In Sook ; Kim, Meyoung-Kon ; Pie, Jae Eun ; Drumm, Debra ; Paik, David S. ; Waldmann, Thomas A. ; Paik, Chang H. ; Carrasquillo, Jorge A. / The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. In: Cancer Research. 1999 ; Vol. 59, No. 2. pp. 422-430.
@article{fb708ad994a84d06aa266ae87b7b90a4,
title = "The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points",
abstract = "To evaluate a method for preventing the nephrotoxicity caused by the high renal accumulation of radiolabeled or toxin-conjugated small immunoproteins used for cancer therapy, we conjugated humanized anti-Tac Fab fragments with various numbers of glycolate molecules [glycolated Fab fragments (glyco-Fabs)] and separated the conjugates by means of ion-exchange columns into three fractions, depending on their isoelectric points (pIs). We evaluated the biodistribution, pharmacokinetics, and catabolism in normal nude mice of nonglycolated Fab (pI ≥ 9.3) and three different preparations of glyco-Fab, including strongly anionic glyco-Fab (sa-glyco-Fab: pI ≤ 4.5), mildly anionic glyco-Fab (pI = 4.5-7), and mildly cationic glyco-Fab (pI = 7- 9.3). In addition, the biodistributions of 125I-labeled sa-glyco-Fab and 13I-labeled nonglycolated Fab were evaluated in normal nude mice coinjected with 50 mg of L-lysine and/or 1 μg of furosemide and in a control group without coinjection. We then evaluated the serial biodistribution of 125I- labeled sa-glyco-Fab (4 μCi/1 μg) and 131I-labeled nonglycolated Fab (5 μCi/1 μg) in Tac antigen-positive (ATAC4) and -negative (A431) tumor- bearing nude mice with s.c. tumor xenografts derived from Tac antigen- positive ATAC4 cells and receptor-negative A431 cells. These animals were coinjected with 30 mg of lysine i.v. and 30 mg of lysine i.p. 15 min after the radiolabeled Fab injection. To evaluate the biodistribution data and study scintigraphic imaging, we performed serial scintigraphy on normal and tumor-bearing mice with all four 131I-labeled preparations. 125I- labeled mildly cationic glyco-Fab and 131I-labeled nonglycolated Fab had similar distributions, except in the kidney. However, both 125I-labeled anionic glyco-Fab preparations showed significantly different distributions from both cationic Fabs in the blood, liver, lung, and spleen. Renal accumulation of all four radiolabeled Fab preparations increased significantly as the pI increased (P < 0.01). In addition, the intact fraction of Fab excreted into urine increased as pI decreased. Therefore, the glomerular filtration depended on whether the charge on the Fab was positive or negative. The proportion of Fab reabsorbed by the proximal tubules increased as pI increased. 125I-labeled sa-glyco-Fab and 125I-labeled mildly anionic glyco-Fab showed a similar distribution in the blood and all organs except the kidney. Lysine led to an additional blocking effect on proximal tubular uptake of both sa-glyco-Fab and nonglycolated Fab. Addition of furosemide yielded only a small effect when used with lysine. With lysine, the sa-glyco-Fab:nonglycolated Fab estimated integral radioactivity ratios were 4.7 and 0.7 in the ATAC4 tumor and in the kidney, respectively. The use of anionic fragments, which may be used in conjunction with lysine, represents a promising approach that may help decrease the renal toxicity of other small fragments, the molecular weights of which range from M(r) 40,000 to 70,000, and, thereby, allow higher doses of radiation to the tumor.",
author = "Hisataka Kobayashi and Nhat Le and Kim, {In Sook} and Meyoung-Kon Kim and Pie, {Jae Eun} and Debra Drumm and Paik, {David S.} and Waldmann, {Thomas A.} and Paik, {Chang H.} and Carrasquillo, {Jorge A.}",
year = "1999",
month = "1",
day = "16",
language = "English",
volume = "59",
pages = "422--430",
journal = "Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "2",

}

TY - JOUR

T1 - The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points

AU - Kobayashi, Hisataka

AU - Le, Nhat

AU - Kim, In Sook

AU - Kim, Meyoung-Kon

AU - Pie, Jae Eun

AU - Drumm, Debra

AU - Paik, David S.

AU - Waldmann, Thomas A.

AU - Paik, Chang H.

AU - Carrasquillo, Jorge A.

PY - 1999/1/16

Y1 - 1999/1/16

N2 - To evaluate a method for preventing the nephrotoxicity caused by the high renal accumulation of radiolabeled or toxin-conjugated small immunoproteins used for cancer therapy, we conjugated humanized anti-Tac Fab fragments with various numbers of glycolate molecules [glycolated Fab fragments (glyco-Fabs)] and separated the conjugates by means of ion-exchange columns into three fractions, depending on their isoelectric points (pIs). We evaluated the biodistribution, pharmacokinetics, and catabolism in normal nude mice of nonglycolated Fab (pI ≥ 9.3) and three different preparations of glyco-Fab, including strongly anionic glyco-Fab (sa-glyco-Fab: pI ≤ 4.5), mildly anionic glyco-Fab (pI = 4.5-7), and mildly cationic glyco-Fab (pI = 7- 9.3). In addition, the biodistributions of 125I-labeled sa-glyco-Fab and 13I-labeled nonglycolated Fab were evaluated in normal nude mice coinjected with 50 mg of L-lysine and/or 1 μg of furosemide and in a control group without coinjection. We then evaluated the serial biodistribution of 125I- labeled sa-glyco-Fab (4 μCi/1 μg) and 131I-labeled nonglycolated Fab (5 μCi/1 μg) in Tac antigen-positive (ATAC4) and -negative (A431) tumor- bearing nude mice with s.c. tumor xenografts derived from Tac antigen- positive ATAC4 cells and receptor-negative A431 cells. These animals were coinjected with 30 mg of lysine i.v. and 30 mg of lysine i.p. 15 min after the radiolabeled Fab injection. To evaluate the biodistribution data and study scintigraphic imaging, we performed serial scintigraphy on normal and tumor-bearing mice with all four 131I-labeled preparations. 125I- labeled mildly cationic glyco-Fab and 131I-labeled nonglycolated Fab had similar distributions, except in the kidney. However, both 125I-labeled anionic glyco-Fab preparations showed significantly different distributions from both cationic Fabs in the blood, liver, lung, and spleen. Renal accumulation of all four radiolabeled Fab preparations increased significantly as the pI increased (P < 0.01). In addition, the intact fraction of Fab excreted into urine increased as pI decreased. Therefore, the glomerular filtration depended on whether the charge on the Fab was positive or negative. The proportion of Fab reabsorbed by the proximal tubules increased as pI increased. 125I-labeled sa-glyco-Fab and 125I-labeled mildly anionic glyco-Fab showed a similar distribution in the blood and all organs except the kidney. Lysine led to an additional blocking effect on proximal tubular uptake of both sa-glyco-Fab and nonglycolated Fab. Addition of furosemide yielded only a small effect when used with lysine. With lysine, the sa-glyco-Fab:nonglycolated Fab estimated integral radioactivity ratios were 4.7 and 0.7 in the ATAC4 tumor and in the kidney, respectively. The use of anionic fragments, which may be used in conjunction with lysine, represents a promising approach that may help decrease the renal toxicity of other small fragments, the molecular weights of which range from M(r) 40,000 to 70,000, and, thereby, allow higher doses of radiation to the tumor.

AB - To evaluate a method for preventing the nephrotoxicity caused by the high renal accumulation of radiolabeled or toxin-conjugated small immunoproteins used for cancer therapy, we conjugated humanized anti-Tac Fab fragments with various numbers of glycolate molecules [glycolated Fab fragments (glyco-Fabs)] and separated the conjugates by means of ion-exchange columns into three fractions, depending on their isoelectric points (pIs). We evaluated the biodistribution, pharmacokinetics, and catabolism in normal nude mice of nonglycolated Fab (pI ≥ 9.3) and three different preparations of glyco-Fab, including strongly anionic glyco-Fab (sa-glyco-Fab: pI ≤ 4.5), mildly anionic glyco-Fab (pI = 4.5-7), and mildly cationic glyco-Fab (pI = 7- 9.3). In addition, the biodistributions of 125I-labeled sa-glyco-Fab and 13I-labeled nonglycolated Fab were evaluated in normal nude mice coinjected with 50 mg of L-lysine and/or 1 μg of furosemide and in a control group without coinjection. We then evaluated the serial biodistribution of 125I- labeled sa-glyco-Fab (4 μCi/1 μg) and 131I-labeled nonglycolated Fab (5 μCi/1 μg) in Tac antigen-positive (ATAC4) and -negative (A431) tumor- bearing nude mice with s.c. tumor xenografts derived from Tac antigen- positive ATAC4 cells and receptor-negative A431 cells. These animals were coinjected with 30 mg of lysine i.v. and 30 mg of lysine i.p. 15 min after the radiolabeled Fab injection. To evaluate the biodistribution data and study scintigraphic imaging, we performed serial scintigraphy on normal and tumor-bearing mice with all four 131I-labeled preparations. 125I- labeled mildly cationic glyco-Fab and 131I-labeled nonglycolated Fab had similar distributions, except in the kidney. However, both 125I-labeled anionic glyco-Fab preparations showed significantly different distributions from both cationic Fabs in the blood, liver, lung, and spleen. Renal accumulation of all four radiolabeled Fab preparations increased significantly as the pI increased (P < 0.01). In addition, the intact fraction of Fab excreted into urine increased as pI decreased. Therefore, the glomerular filtration depended on whether the charge on the Fab was positive or negative. The proportion of Fab reabsorbed by the proximal tubules increased as pI increased. 125I-labeled sa-glyco-Fab and 125I-labeled mildly anionic glyco-Fab showed a similar distribution in the blood and all organs except the kidney. Lysine led to an additional blocking effect on proximal tubular uptake of both sa-glyco-Fab and nonglycolated Fab. Addition of furosemide yielded only a small effect when used with lysine. With lysine, the sa-glyco-Fab:nonglycolated Fab estimated integral radioactivity ratios were 4.7 and 0.7 in the ATAC4 tumor and in the kidney, respectively. The use of anionic fragments, which may be used in conjunction with lysine, represents a promising approach that may help decrease the renal toxicity of other small fragments, the molecular weights of which range from M(r) 40,000 to 70,000, and, thereby, allow higher doses of radiation to the tumor.

UR - http://www.scopus.com/inward/record.url?scp=0033555629&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033555629&partnerID=8YFLogxK

M3 - Article

VL - 59

SP - 422

EP - 430

JO - Cancer Research

JF - Cancer Research

SN - 0008-5472

IS - 2

ER -