The protective effect of hydromorphone to ischemia in rat glial cells

Young Sung Kim, Woon Young Kim, Yeon hwa Kim, Ji Won Yoo, Too Jae Min

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Background: Ischemic insults during operation can cause ischemic-reperfusion injuries in brain as well as memory impairments. Total intravenous anesthesia (TIVA) is the preferred anesthetic method in brain surgery, as it utilizes motor evoked potential monitoring. And the use of opioids is common in TIVA. However there are few studies about ischemic protective effect of opioids to glial cells. Methods: We used mixed cultures of rat glial cells, which were harvested from the brain of 1-day old rat. We divided the experimental groups according to their hydromorphone conditioning period: (a) pre-culture, (b) per-culture, or (c) pre- and per-culture. We measured the levels of the reactive oxygen species (ROS) induced by tert-butyl hydroperoxide (TBH) using flow cytometry. The ROS levels in the glial cells were also measured after the administration of 100 nM hydromorphone and selective opioid receptor antagonists. Results: The ROS levels were reduced in the hydromorphone-treated group, as compared to the control group (only TBH treated). There were no differences between pre-conditioned and per-conditioned groups. However, the ROS levels were more reduced in pre- and per-conditioned group compared to pre-conditioned or per-conditioned only groups. Furthermore, selective antagonists for the delta, kappa, or mu opioid receptor partially negated the hydromorphone effect. Conclusion: This study demonstrated that hydromorphone can have additional protective effects on oxidative stress when pre- and per-conditioning is combined. Furthermore we proved that μ, δ, κ opioid receptors participate in protective mechanism of hydromorphone to glial cells.

Original languageEnglish
Article number610
JournalSpringerPlus
Volume5
Issue number1
DOIs
Publication statusPublished - 2016 Dec 1

Fingerprint

Hydromorphone
Neuroglia
Ischemia
Reactive Oxygen Species
tert-Butylhydroperoxide
Intravenous Anesthesia
Opioid Analgesics
Brain
Motor Evoked Potentials
kappa Opioid Receptor
delta Opioid Receptor
Narcotic Antagonists
mu Opioid Receptor
Opioid Receptors
Reperfusion Injury
Anesthetics
Flow Cytometry
Oxidative Stress
Control Groups
Conditioning (Psychology)

Keywords

  • Hydromorphone
  • Neuroglia
  • Reactive oxygen species

ASJC Scopus subject areas

  • General

Cite this

The protective effect of hydromorphone to ischemia in rat glial cells. / Kim, Young Sung; Kim, Woon Young; Kim, Yeon hwa; Yoo, Ji Won; Min, Too Jae.

In: SpringerPlus, Vol. 5, No. 1, 610, 01.12.2016.

Research output: Contribution to journalArticle

Kim, Young Sung ; Kim, Woon Young ; Kim, Yeon hwa ; Yoo, Ji Won ; Min, Too Jae. / The protective effect of hydromorphone to ischemia in rat glial cells. In: SpringerPlus. 2016 ; Vol. 5, No. 1.
@article{2f4d56dda76641c0bf78fe71b2195b25,
title = "The protective effect of hydromorphone to ischemia in rat glial cells",
abstract = "Background: Ischemic insults during operation can cause ischemic-reperfusion injuries in brain as well as memory impairments. Total intravenous anesthesia (TIVA) is the preferred anesthetic method in brain surgery, as it utilizes motor evoked potential monitoring. And the use of opioids is common in TIVA. However there are few studies about ischemic protective effect of opioids to glial cells. Methods: We used mixed cultures of rat glial cells, which were harvested from the brain of 1-day old rat. We divided the experimental groups according to their hydromorphone conditioning period: (a) pre-culture, (b) per-culture, or (c) pre- and per-culture. We measured the levels of the reactive oxygen species (ROS) induced by tert-butyl hydroperoxide (TBH) using flow cytometry. The ROS levels in the glial cells were also measured after the administration of 100 nM hydromorphone and selective opioid receptor antagonists. Results: The ROS levels were reduced in the hydromorphone-treated group, as compared to the control group (only TBH treated). There were no differences between pre-conditioned and per-conditioned groups. However, the ROS levels were more reduced in pre- and per-conditioned group compared to pre-conditioned or per-conditioned only groups. Furthermore, selective antagonists for the delta, kappa, or mu opioid receptor partially negated the hydromorphone effect. Conclusion: This study demonstrated that hydromorphone can have additional protective effects on oxidative stress when pre- and per-conditioning is combined. Furthermore we proved that μ, δ, κ opioid receptors participate in protective mechanism of hydromorphone to glial cells.",
keywords = "Hydromorphone, Neuroglia, Reactive oxygen species",
author = "Kim, {Young Sung} and Kim, {Woon Young} and Kim, {Yeon hwa} and Yoo, {Ji Won} and Min, {Too Jae}",
year = "2016",
month = "12",
day = "1",
doi = "10.1186/s40064-016-2281-7",
language = "English",
volume = "5",
journal = "SpringerPlus",
issn = "2193-1801",
publisher = "Springer Science and Business Media Deutschland GmbH",
number = "1",

}

TY - JOUR

T1 - The protective effect of hydromorphone to ischemia in rat glial cells

AU - Kim, Young Sung

AU - Kim, Woon Young

AU - Kim, Yeon hwa

AU - Yoo, Ji Won

AU - Min, Too Jae

PY - 2016/12/1

Y1 - 2016/12/1

N2 - Background: Ischemic insults during operation can cause ischemic-reperfusion injuries in brain as well as memory impairments. Total intravenous anesthesia (TIVA) is the preferred anesthetic method in brain surgery, as it utilizes motor evoked potential monitoring. And the use of opioids is common in TIVA. However there are few studies about ischemic protective effect of opioids to glial cells. Methods: We used mixed cultures of rat glial cells, which were harvested from the brain of 1-day old rat. We divided the experimental groups according to their hydromorphone conditioning period: (a) pre-culture, (b) per-culture, or (c) pre- and per-culture. We measured the levels of the reactive oxygen species (ROS) induced by tert-butyl hydroperoxide (TBH) using flow cytometry. The ROS levels in the glial cells were also measured after the administration of 100 nM hydromorphone and selective opioid receptor antagonists. Results: The ROS levels were reduced in the hydromorphone-treated group, as compared to the control group (only TBH treated). There were no differences between pre-conditioned and per-conditioned groups. However, the ROS levels were more reduced in pre- and per-conditioned group compared to pre-conditioned or per-conditioned only groups. Furthermore, selective antagonists for the delta, kappa, or mu opioid receptor partially negated the hydromorphone effect. Conclusion: This study demonstrated that hydromorphone can have additional protective effects on oxidative stress when pre- and per-conditioning is combined. Furthermore we proved that μ, δ, κ opioid receptors participate in protective mechanism of hydromorphone to glial cells.

AB - Background: Ischemic insults during operation can cause ischemic-reperfusion injuries in brain as well as memory impairments. Total intravenous anesthesia (TIVA) is the preferred anesthetic method in brain surgery, as it utilizes motor evoked potential monitoring. And the use of opioids is common in TIVA. However there are few studies about ischemic protective effect of opioids to glial cells. Methods: We used mixed cultures of rat glial cells, which were harvested from the brain of 1-day old rat. We divided the experimental groups according to their hydromorphone conditioning period: (a) pre-culture, (b) per-culture, or (c) pre- and per-culture. We measured the levels of the reactive oxygen species (ROS) induced by tert-butyl hydroperoxide (TBH) using flow cytometry. The ROS levels in the glial cells were also measured after the administration of 100 nM hydromorphone and selective opioid receptor antagonists. Results: The ROS levels were reduced in the hydromorphone-treated group, as compared to the control group (only TBH treated). There were no differences between pre-conditioned and per-conditioned groups. However, the ROS levels were more reduced in pre- and per-conditioned group compared to pre-conditioned or per-conditioned only groups. Furthermore, selective antagonists for the delta, kappa, or mu opioid receptor partially negated the hydromorphone effect. Conclusion: This study demonstrated that hydromorphone can have additional protective effects on oxidative stress when pre- and per-conditioning is combined. Furthermore we proved that μ, δ, κ opioid receptors participate in protective mechanism of hydromorphone to glial cells.

KW - Hydromorphone

KW - Neuroglia

KW - Reactive oxygen species

UR - http://www.scopus.com/inward/record.url?scp=84979742675&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84979742675&partnerID=8YFLogxK

U2 - 10.1186/s40064-016-2281-7

DO - 10.1186/s40064-016-2281-7

M3 - Article

VL - 5

JO - SpringerPlus

JF - SpringerPlus

SN - 2193-1801

IS - 1

M1 - 610

ER -