The ubiquitin-conjugating enzyme UbcH6 regulates the transcriptional repression activity of the SCA1 gene product ataxin-1

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is caused by expansion of the polyglutamine tract in the SCA1 gene product, ataxin-1. We previously reported that the E2 ubiquitin-conjugating enzyme UbcH6 interacts with and ubiquitinates the ataxin-1 proteins as an E2-substrate cognate pair in the ubiquitin-proteasome system. In the present study, we further investigated whether the function of ataxin-1 is associated with UbcH6 and found that UbcH6 regulates the transcriptional repression activity of ataxin-1. The overexpression of UbcH6 reduced the transcriptional repression activity of ataxin-1. Interestingly, ataxin-1(30Q) was more affected by the presence of UbcH6 than ataxin-1(82Q), implying that the length of the polyglutamine tract in ataxin-1 might be involved in determining the stability of ataxin-1. The half-life of ataxin-1(82Q) was longer than that of ataxin-1(30Q) in the presence of UbcH6. shRNAs targeting UbcH6 enhanced the transcriptional repression activity of ataxin-1. In addition, the overexpression of UbcH6 reduced the formation of ataxin-1 aggregates. Our studies demonstrate that UbcH6 modulates the transcriptional repression activity of ataxin-1 by modulating the degradation of ataxin-1, suggesting that UbcH6 may have some therapeutic potential in the treatment of SCA1.

Original languageEnglish
Pages (from-to)735-740
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume372
Issue number4
DOIs
Publication statusPublished - 2008 Aug 8

Fingerprint

Ubiquitin-Conjugating Enzymes
Spinocerebellar Ataxias
Genes
Ataxin-1

Keywords

  • Ataxin-1
  • Transcriptional regulation
  • UbcH6

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this

@article{62bdf19be0fe4649a4c2830aeb228a4d,
title = "The ubiquitin-conjugating enzyme UbcH6 regulates the transcriptional repression activity of the SCA1 gene product ataxin-1",
abstract = "Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is caused by expansion of the polyglutamine tract in the SCA1 gene product, ataxin-1. We previously reported that the E2 ubiquitin-conjugating enzyme UbcH6 interacts with and ubiquitinates the ataxin-1 proteins as an E2-substrate cognate pair in the ubiquitin-proteasome system. In the present study, we further investigated whether the function of ataxin-1 is associated with UbcH6 and found that UbcH6 regulates the transcriptional repression activity of ataxin-1. The overexpression of UbcH6 reduced the transcriptional repression activity of ataxin-1. Interestingly, ataxin-1(30Q) was more affected by the presence of UbcH6 than ataxin-1(82Q), implying that the length of the polyglutamine tract in ataxin-1 might be involved in determining the stability of ataxin-1. The half-life of ataxin-1(82Q) was longer than that of ataxin-1(30Q) in the presence of UbcH6. shRNAs targeting UbcH6 enhanced the transcriptional repression activity of ataxin-1. In addition, the overexpression of UbcH6 reduced the formation of ataxin-1 aggregates. Our studies demonstrate that UbcH6 modulates the transcriptional repression activity of ataxin-1 by modulating the degradation of ataxin-1, suggesting that UbcH6 may have some therapeutic potential in the treatment of SCA1.",
keywords = "Ataxin-1, Transcriptional regulation, UbcH6",
author = "Soyeon Lee and Sunghoi Hong and Kang, {Seong Man}",
year = "2008",
month = "8",
day = "8",
doi = "10.1016/j.bbrc.2008.05.125",
language = "English",
volume = "372",
pages = "735--740",
journal = "The BMJ",
issn = "0730-6512",
publisher = "Kluwer Academic Publishers",
number = "4",

}

TY - JOUR

T1 - The ubiquitin-conjugating enzyme UbcH6 regulates the transcriptional repression activity of the SCA1 gene product ataxin-1

AU - Lee, Soyeon

AU - Hong, Sunghoi

AU - Kang, Seong Man

PY - 2008/8/8

Y1 - 2008/8/8

N2 - Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is caused by expansion of the polyglutamine tract in the SCA1 gene product, ataxin-1. We previously reported that the E2 ubiquitin-conjugating enzyme UbcH6 interacts with and ubiquitinates the ataxin-1 proteins as an E2-substrate cognate pair in the ubiquitin-proteasome system. In the present study, we further investigated whether the function of ataxin-1 is associated with UbcH6 and found that UbcH6 regulates the transcriptional repression activity of ataxin-1. The overexpression of UbcH6 reduced the transcriptional repression activity of ataxin-1. Interestingly, ataxin-1(30Q) was more affected by the presence of UbcH6 than ataxin-1(82Q), implying that the length of the polyglutamine tract in ataxin-1 might be involved in determining the stability of ataxin-1. The half-life of ataxin-1(82Q) was longer than that of ataxin-1(30Q) in the presence of UbcH6. shRNAs targeting UbcH6 enhanced the transcriptional repression activity of ataxin-1. In addition, the overexpression of UbcH6 reduced the formation of ataxin-1 aggregates. Our studies demonstrate that UbcH6 modulates the transcriptional repression activity of ataxin-1 by modulating the degradation of ataxin-1, suggesting that UbcH6 may have some therapeutic potential in the treatment of SCA1.

AB - Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is caused by expansion of the polyglutamine tract in the SCA1 gene product, ataxin-1. We previously reported that the E2 ubiquitin-conjugating enzyme UbcH6 interacts with and ubiquitinates the ataxin-1 proteins as an E2-substrate cognate pair in the ubiquitin-proteasome system. In the present study, we further investigated whether the function of ataxin-1 is associated with UbcH6 and found that UbcH6 regulates the transcriptional repression activity of ataxin-1. The overexpression of UbcH6 reduced the transcriptional repression activity of ataxin-1. Interestingly, ataxin-1(30Q) was more affected by the presence of UbcH6 than ataxin-1(82Q), implying that the length of the polyglutamine tract in ataxin-1 might be involved in determining the stability of ataxin-1. The half-life of ataxin-1(82Q) was longer than that of ataxin-1(30Q) in the presence of UbcH6. shRNAs targeting UbcH6 enhanced the transcriptional repression activity of ataxin-1. In addition, the overexpression of UbcH6 reduced the formation of ataxin-1 aggregates. Our studies demonstrate that UbcH6 modulates the transcriptional repression activity of ataxin-1 by modulating the degradation of ataxin-1, suggesting that UbcH6 may have some therapeutic potential in the treatment of SCA1.

KW - Ataxin-1

KW - Transcriptional regulation

KW - UbcH6

UR - http://www.scopus.com/inward/record.url?scp=46149116525&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=46149116525&partnerID=8YFLogxK

U2 - 10.1016/j.bbrc.2008.05.125

DO - 10.1016/j.bbrc.2008.05.125

M3 - Article

VL - 372

SP - 735

EP - 740

JO - The BMJ

JF - The BMJ

SN - 0730-6512

IS - 4

ER -