TY - JOUR
T1 - Thermal properties of composite organic phase change materials (PCMs)
T2 - A critical review on their engineering chemistry
AU - Atinafu, Dimberu G.
AU - Ok, Yong Sik
AU - Kua, Harn Wei
AU - Kim, Sumin
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [No. 2019R1A2C4100284 ]; and This work was supported (in part) by the Yonsei University Research Fund (Yonsei Frontier Lab. Young Researcher Supporting Program) of 2020.
Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/11/25
Y1 - 2020/11/25
N2 - The design of composite phase change materials (PCMs) for thermal energy storage has attracted increasing attention owing to their high latent heat storage capability, enhanced thermal transfer performance, and low volume variation in addition to being seepage free. This review aims to provide techniques for engineering the thermal parameters of composite PCMs (e.g., latent heat, thermal conductivity, durability, and thermal stability) for several advanced large-scale applications and for producing desired thermophysical, chemical, and mechanical properties. In addition, approaches and materials employed for composite synthesis are described. Challenges and factors influencing the thermal energy storage performance of composite PCMs are also analyzed. Furthermore, the recent advanced applications of composite PCMs (including medical, building, electronics, solar, and energy storage and conversion) as well as the potential for producing energy storage and conversion materials are indicated. This report is likely to provide a foundation for designing multifunctional organic composite PCMs.
AB - The design of composite phase change materials (PCMs) for thermal energy storage has attracted increasing attention owing to their high latent heat storage capability, enhanced thermal transfer performance, and low volume variation in addition to being seepage free. This review aims to provide techniques for engineering the thermal parameters of composite PCMs (e.g., latent heat, thermal conductivity, durability, and thermal stability) for several advanced large-scale applications and for producing desired thermophysical, chemical, and mechanical properties. In addition, approaches and materials employed for composite synthesis are described. Challenges and factors influencing the thermal energy storage performance of composite PCMs are also analyzed. Furthermore, the recent advanced applications of composite PCMs (including medical, building, electronics, solar, and energy storage and conversion) as well as the potential for producing energy storage and conversion materials are indicated. This report is likely to provide a foundation for designing multifunctional organic composite PCMs.
KW - Composite PCMs
KW - Engineering thermal parameters
KW - Thermal energy storage
UR - http://www.scopus.com/inward/record.url?scp=85090426073&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2020.115960
DO - 10.1016/j.applthermaleng.2020.115960
M3 - Article
AN - SCOPUS:85090426073
VL - 181
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
SN - 1359-4311
M1 - 115960
ER -