TY - GEN
T1 - Time Allocation Methods for Secure Wireless Powered Communication Networks
AU - Moon, Jihwan
AU - Lee, Hoon
AU - Song, Changick
AU - Lee, Inkyu
N1 - Funding Information:
This work was supported by the National Research Foundation through the Ministry of Science, ICT, and Future Planning (MSIP), Korean Government under Grant 2017R1A2B3012316.
Publisher Copyright:
© 2018 IEEE.
PY - 2018/7/2
Y1 - 2018/7/2
N2 - In this work, we investigate a wireless powered communication network (WPCN) where multiple eavesdroppers attempt to intercept the information between a hybrid access-point (H-AP) and an energy harvesting (EH) user. During the first energy transfer (ET) phase, the EH user and an EH cooperative jammer harvest energy from the transmitted signals of the H-AP. Then, in the next information transfer (IT) phase, the user sends confidential information to the H-AP while the jammer broadcasts artificial noises to the eavesdroppers by utilizing their previously harvested energy. We particularly consider optimization of the time allocation between the ET and the IT phases by which the secrecy rate is maximized. To cut down a computational burden, a low-complexity closed-form solution of the time allocation factor with some interesting behaviors will be proposed by a worst-case approximation. Through simulation results, we evaluate the performance of our proposed scheme and show that a performance gain compared to conventional schemes becomes clearer with the increased number of eavesdroppers.
AB - In this work, we investigate a wireless powered communication network (WPCN) where multiple eavesdroppers attempt to intercept the information between a hybrid access-point (H-AP) and an energy harvesting (EH) user. During the first energy transfer (ET) phase, the EH user and an EH cooperative jammer harvest energy from the transmitted signals of the H-AP. Then, in the next information transfer (IT) phase, the user sends confidential information to the H-AP while the jammer broadcasts artificial noises to the eavesdroppers by utilizing their previously harvested energy. We particularly consider optimization of the time allocation between the ET and the IT phases by which the secrecy rate is maximized. To cut down a computational burden, a low-complexity closed-form solution of the time allocation factor with some interesting behaviors will be proposed by a worst-case approximation. Through simulation results, we evaluate the performance of our proposed scheme and show that a performance gain compared to conventional schemes becomes clearer with the increased number of eavesdroppers.
UR - http://www.scopus.com/inward/record.url?scp=85064922263&partnerID=8YFLogxK
U2 - 10.1109/VTCFall.2018.8690771
DO - 10.1109/VTCFall.2018.8690771
M3 - Conference contribution
AN - SCOPUS:85064922263
T3 - IEEE Vehicular Technology Conference
BT - 2018 IEEE 88th Vehicular Technology Conference, VTC-Fall 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 88th IEEE Vehicular Technology Conference, VTC-Fall 2018
Y2 - 27 August 2018 through 30 August 2018
ER -