Time-Variable Chiroptical Vibrational Sum-Frequency Generation Spectroscopy of Chiral Chemical Solution

Taegon Lee, Juntaek Oh, Sanghee Nah, Dae Sik Choi, Hanju Rhee, Minhaeng Cho

Research output: Contribution to journalArticlepeer-review

Abstract

Vibrational sum-frequency generation (VSFG) spectroscopy, a surface-specific technique, was shown to be useful even for characterizing the vibrational optical activity of chiral molecules in isotropic bulk liquids. However, accurately determining the spectroscopic parameters is still challenging because of the spectral congestion of chiroptical VSFG peaks with different amplitudes and phases. Here, we show that a time-variable infrared-visible chiroptical three-wave-mixing technique can be used to determine the spectroscopic parameters of second-order vibrational response signals from chiral chemical liquids. For varying the delay time between infrared and temporally asymmetric visible laser pulses, we measure the chiral VSFG, achiral VSFG, and their interference spectra of bulk R-(+)-limonene liquid and perform a global fitting analysis for those time-variable spectra to determine their spectroscopic parameters accurately. We anticipate that this time-variable VSFG approach will be useful for developing nearly background-free chiroptical characterization techniques with enhanced spectral resolution.

Original languageEnglish
Pages (from-to)10218-10224
Number of pages7
JournalJournal of Physical Chemistry Letters
Volume12
Issue number41
DOIs
Publication statusPublished - 2021 Oct 21

ASJC Scopus subject areas

  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Time-Variable Chiroptical Vibrational Sum-Frequency Generation Spectroscopy of Chiral Chemical Solution'. Together they form a unique fingerprint.

Cite this