Topological correction of infant cortical surfaces using anatomically constrained U-net

Liang Sun, Daoqiang Zhang, Li Wang, Wei Shao, Zengsi Chen, Weili Lin, Dinggang Shen, Gang Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Reconstruction of accurate cortical surfaces with minimal topological errors (i.e., handles and holes) from infant brain MR images is important in early brain development studies. However, infant brain MR images usually exhibit extremely low tissue contrast (especially from 3 to 9 months of age) and dynamic imaging appearance patterns. Thus, it is inevitable to have large amounts of topological errors in the infant brain tissue segmentation results, thus leading to inaccurate surface reconstruction. To address these issues, inspired by recent advances in deep learning methods, we propose an anatomically constrained U-Net method for topological correction of infant cortical surfaces. Specifically, in our method, we first extract candidate voxels with potential topological errors, by leveraging a topology-preserving level set method. Then, we propose a U-Net with anatomical constraints to correct those located candidate voxels. Due to the fact that infant cortical surfaces often contain large handles or holes, it is difficult to completely correct all errors using one-shot correction. Therefore, we further gather these two steps into an iterative framework to correct large topological errors gradually. To our knowledge, this is the first work introducing deep learning for infant cortical topological correction. We compare our method with the state-of-the-art method on infant cortical topology and show the superior performance of our method.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Proceedings
EditorsMingxia Liu, Heung-Il Suk, Yinghuan Shi
PublisherSpringer Verlag
Pages125-133
Number of pages9
ISBN (Print)9783030009182
DOIs
Publication statusPublished - 2018 Jan 1
Externally publishedYes
Event9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sep 162018 Sep 16

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11046 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period18/9/1618/9/16

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Topological correction of infant cortical surfaces using anatomically constrained U-net'. Together they form a unique fingerprint.

  • Cite this

    Sun, L., Zhang, D., Wang, L., Shao, W., Chen, Z., Lin, W., Shen, D., & Li, G. (2018). Topological correction of infant cortical surfaces using anatomically constrained U-net. In M. Liu, H-I. Suk, & Y. Shi (Eds.), Machine Learning in Medical Imaging - 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Proceedings (pp. 125-133). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11046 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00919-9_15