TY - JOUR
T1 - Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process
AU - Lee, Songbok
AU - Kim, Youngjin
AU - Park, Jungmi
AU - Shon, Ho Kyong
AU - Hong, Seungkwan
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT) (No. 2017M2B2A9072516 ).
Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/6/15
Y1 - 2018/6/15
N2 - The use of forward osmosis (FO) for concentrating radioactive liquid waste from radiation therapy rooms in hospitals was systematically investigated in this study. The removal of natural and radioactive iodine using FO was first investigated with varying pHs and draw solutions (DSs) to identify the optimal conditions for FO concentration. Results showed that FO had a successful rejection rate for both natural and radioactive iodine (125I) of up to 99.3%. This high rejection rate was achieved at a high pH, mainly due to electric repulsion between iodine and membrane. Higher iodine removal by FO was also attained with a DS that exhibits a reverse salt flux (RSF) adequate to hinder iodine transport. Following this, actual radioactive medical liquid waste was collected and concentrated using FO under these optimal conditions. The radionuclides in the medical waste (131I) were removed effectively, but the water recovery rate was limited due to severe membrane fouling. To enhance the recovery rate, hydraulic washing was applied, but this had only limited success due to combined organic-inorganic fouling of the FO membrane. Finally, the effect of FO concentration on the reduction of septic tank volume was simulated as a function of recovery rate. To our knowledge, this study is the first attempt to explore the potential of FO technology for treating radioactive waste, and thus could be expanded to the dewatering of the radioactive liquid wastes from a variety of sources, such as nuclear power plants.
AB - The use of forward osmosis (FO) for concentrating radioactive liquid waste from radiation therapy rooms in hospitals was systematically investigated in this study. The removal of natural and radioactive iodine using FO was first investigated with varying pHs and draw solutions (DSs) to identify the optimal conditions for FO concentration. Results showed that FO had a successful rejection rate for both natural and radioactive iodine (125I) of up to 99.3%. This high rejection rate was achieved at a high pH, mainly due to electric repulsion between iodine and membrane. Higher iodine removal by FO was also attained with a DS that exhibits a reverse salt flux (RSF) adequate to hinder iodine transport. Following this, actual radioactive medical liquid waste was collected and concentrated using FO under these optimal conditions. The radionuclides in the medical waste (131I) were removed effectively, but the water recovery rate was limited due to severe membrane fouling. To enhance the recovery rate, hydraulic washing was applied, but this had only limited success due to combined organic-inorganic fouling of the FO membrane. Finally, the effect of FO concentration on the reduction of septic tank volume was simulated as a function of recovery rate. To our knowledge, this study is the first attempt to explore the potential of FO technology for treating radioactive waste, and thus could be expanded to the dewatering of the radioactive liquid wastes from a variety of sources, such as nuclear power plants.
KW - Forward Osmosis
KW - Membrane fouling
KW - Radioactive iodine
KW - Radioactive liquid waste
KW - Wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85045258439&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2018.04.008
DO - 10.1016/j.memsci.2018.04.008
M3 - Article
AN - SCOPUS:85045258439
VL - 556
SP - 238
EP - 247
JO - Jornal of Membrane Science
JF - Jornal of Membrane Science
SN - 0376-7388
ER -