TY - GEN
T1 - Triplet Graph Convolutional Network for Multi-scale Analysis of Functional Connectivity Using Functional MRI
AU - Yao, Dongren
AU - Liu, Mingxia
AU - Wang, Mingliang
AU - Lian, Chunfeng
AU - Wei, Jie
AU - Sun, Li
AU - Sui, Jing
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
PY - 2019
Y1 - 2019
N2 - Brain functional connectivity (FC) derived from resting-state functional MRI (rs-fMRI) data has become a powerful approach to measure and map brain activity. Using fMRI data, graph convolutional network (GCN) has recently shown its superiority in learning discriminative representations of brain FC networks. However, existing studies typically utilize one specific template to partition the brain into multiple regions-of-interest (ROIs) for constructing FCs, which may limit the analysis to a single spatial scale (i.e., a fixed graph) determined by the template. Also, previous methods usually ignore the underlying high-order (e.g., triplet) association among subjects. To this end, we propose a multi-scale triplet graph convolutional network (MTGCN) for brain functional connectivity analysis with rs-fMRI data. Specifically, we first employ multi-scale templates for coarse-to-fine ROI parcellation to construct multi-scale FCs for each subject. We then develop a triplet GCN (TGCN) model to learn multi-scale graph representations of brain FC networks, followed by a weighted fusion scheme for classification. Experimental results on 1,218 subjects suggest the efficacy or our method.
AB - Brain functional connectivity (FC) derived from resting-state functional MRI (rs-fMRI) data has become a powerful approach to measure and map brain activity. Using fMRI data, graph convolutional network (GCN) has recently shown its superiority in learning discriminative representations of brain FC networks. However, existing studies typically utilize one specific template to partition the brain into multiple regions-of-interest (ROIs) for constructing FCs, which may limit the analysis to a single spatial scale (i.e., a fixed graph) determined by the template. Also, previous methods usually ignore the underlying high-order (e.g., triplet) association among subjects. To this end, we propose a multi-scale triplet graph convolutional network (MTGCN) for brain functional connectivity analysis with rs-fMRI data. Specifically, we first employ multi-scale templates for coarse-to-fine ROI parcellation to construct multi-scale FCs for each subject. We then develop a triplet GCN (TGCN) model to learn multi-scale graph representations of brain FC networks, followed by a weighted fusion scheme for classification. Experimental results on 1,218 subjects suggest the efficacy or our method.
UR - http://www.scopus.com/inward/record.url?scp=85076298341&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-35817-4_9
DO - 10.1007/978-3-030-35817-4_9
M3 - Conference contribution
AN - SCOPUS:85076298341
SN - 9783030358167
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 70
EP - 78
BT - Graph Learning in Medical Imaging - 1st International Workshop, GLMI 2019, held in Conjunction with MICCAI 2019, Proceedings
A2 - Zhang, Daoqiang
A2 - Zhou, Luping
A2 - Jie, Biao
A2 - Liu, Mingxia
PB - Springer
T2 - 1st International Workshop on Graph Learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Y2 - 17 October 2019 through 17 October 2019
ER -