Trnalys-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells

Changwon Yang, Minkyeong Lee, Gwonhwa Song, Whasun Lim

Research output: Contribution to journalArticlepeer-review

Abstract

Cisplatin is a standard treatment for prostate cancer, which is the third leading cause of cancer-related deaths among men globally. However, patients who have undergone cisplatin can rxperience relapse. tRNA-derived fragments (tRFs) are small non-coding RNAs generated via tRNA cleavage; their physiological activities are linked to the development of human diseases. Specific tRFs, including tRF-315 derived from tRNALys, are highly expressed in prostate cancer patients. However, whether tRF-315 regulates prostate cancer cell proliferation or apoptosis is unclear. Herein, we confirmed that tRF-315 expression was higher in prostate cancer cells (LNCaP, DU145, and PC3) than in normal prostate cells. tRF-315 prevented cisplatin-induced apoptosis and alleviated cisplatin-induced mitochondrial dysfunction in LNCaP and DU145 cells. Moreover, transfection of tRF-315 inhibitor increased the expression of apoptotic pathway-related proteins in LNCaP and DU145 cells. Furthermore, tRF-315 targeted the tumor suppressor gene GADD45A, thus regulating the cell cycle, which was altered by cisplatin in LNCaP and DU145 cells. Thus, tRF-315 protects prostate cancer cells from mitochondrion-dependent apoptosis induced by cisplatin treatment.

Original languageEnglish
Article number55
Pages (from-to)1-16
Number of pages16
JournalPharmaceutics
Volume13
Issue number1
DOIs
Publication statusPublished - 2021 Jan

Keywords

  • Apoptosis
  • Cisplatin
  • GADD45A
  • Prostate cancer
  • TRNA-derived fragments

ASJC Scopus subject areas

  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Trna<sup>lys</sup>-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells'. Together they form a unique fingerprint.

Cite this