Abstract
Hepatocyte growth factor receptor (HGFR, c-Met) is an essential member of the receptor tyrosine kinase (RTK) family that is often dysregulated during tumor progression, driving a malignant phenotypic state and modulating important cellular functions including tumor growth, invasion, metastasis, and angiogenesis, providing a strong rationale for targeting HGF/c-Met signaling axis in cancer therapy. Based on its protumorigenic potentials, we developed IRCR201, a potent antagonistic antibody targeting the plexin-semaphorin-integrin (PSI) domain of c-Met, using synthetic human antibody phage libraries. We characterized and evaluated the biochemical properties and tumor inhibitory effect of IRCR201 in vitro and in vivo. IRCR201 is a novel fully-human bivalent therapeutic antibody that exhibits cross-reactivity against both human and mouse c-Met proteins with high affinity and specificity. IRCR201 displayed low agonist activity and rapidly depleted total c-Met protein via the lysosomal degradation pathway, inhibiting c-Met-dependent downstream activation and attenuating cellular proliferation in various c-Met-expressing cancer cells. In vivo tumor xenograft models also demonstrated the superior tumor inhibitory responsiveness of IRCR201. Taken together, IRCR201 provides a promising therapeutic agent for c-Met-positive cancer patients through suppressing the c-Met signaling pathway and tumor growth.
Original language | English |
---|---|
Article number | 1968 |
Journal | International journal of molecular sciences |
Volume | 18 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2017 Sept 13 |
Externally published | Yes |
Keywords
- Cancer
- Cross-reactivity
- Fully human antibody
- IRCR201
- PSI domain
- c-Met
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry