Abstract
Antibody fragment (Fab′)-installed polyion complex (PIC) micelles were constructed to improve targetability of small interfering RNA (siRNA) delivery to pancreatic cancer cells. To this end, we synthesized a block copolymer of azide-functionalized poly(ethylene glycol) and poly(l-lysine) and prepared PIC micelles with siRNA. Then, a dibenzylcyclooctyne (DBCO)-modified antihuman tissue factor (TF) Fab′ was conjugated to azido groups on the micellar surface. A fluorescence correlation spectroscopic analysis revealed that 1, 2, or 3 molecule(s) of Fab′(s) were installed onto one micellar nanoparticle according to the feeding ratio of Fab′ (or DBCO) to micelle (or azide). The resulting micelles exhibited ∼40 nm in hydrodynamic diameter, similar to that of the parent micelles before Fab′ conjugation. Flow cytometric analysis showed that three molecules of Fab′-installed PIC micelles (3(Fab′)-micelles) had the highest binding affinity to cultured pancreatic cancer BxPC3 cells, which are known to overexpress TF on their surface. The 3(Fab′)-micelles also exhibited the most efficient gene silencing activity against polo-like kinase 1 mRNA in the cultured cancer cells. Furthermore, the 3(Fab′)-micelles exhibited high penetrability and the highest cellular internalization amounts in BxPC3 spheroids compared with one or two molecule(s) of Fab′-installed PIC micelles. These results demonstrate the potential of anti-TF Fab′-installed PIC micelles for active targeting of stroma-rich pancreatic tumors.
Original language | English |
---|---|
Pages (from-to) | 2320-2329 |
Number of pages | 10 |
Journal | Biomacromolecules |
Volume | 19 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2018 Jun 11 |
ASJC Scopus subject areas
- Bioengineering
- Biomaterials
- Polymers and Plastics
- Materials Chemistry