Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates

In Jung Kim, Nari Seo, Hyun Joo An, Jae Han Kim, Paul V. Harris, Kyoung Heon Kim

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Background: Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively. In this study, we investigated comparative characteristics of TtAA9E from Thielavia terrestris belonging to Type 1 and TaAA9A from Thermoascus aurantiacus belonging to Type 3 on cellulose and pretreated lignocellulose. Results: From product analysis, TtAA9E dominantly generated oligosaccharides with an aldonic acid form, which is an evidence of C1 oxidation, while TaAA9A generated oligosaccharides with both aldonic acid and 4-ketoaldose forms, which is evidence of C1 and C4 oxidations, respectively. For hydrolysis of cellulose (Avicel) by cellulase, higher synergism was observed for TtAA9E than for TaAA9A. For hydrolysis of pretreated lignocellulose using rice straw, synergistic behaviors of TtAA9E and TaAA9A were different depending on the pretreatment of rice straw. Specifically, on acid-pretreated rice straw, TtAA9E showed a higher synergism than TaAA9A while on alkali-pretreated rice straw, TaAA9A showed a higher synergism than TtAA9E. Conclusions: We show type-dependent action modes of TtAA9E and TaAA9A for cellulose oxidation together with substrate-dependent synergistic hydrolysis of cellulosic substrates. The results obtained from this study indicate the different behaviors of AA9s on cellulose and pretreated lignocellulose, suggesting a selection of AA9 proteins specific to substrates is required for industrial utilization.

Original languageEnglish
Article number46
JournalBiotechnology for Biofuels
Volume10
Issue number1
DOIs
Publication statusPublished - 2017 Dec 1

Fingerprint

Cellulose
cellulose
substrate
Straw
Substrates
straw
synergism
hydrolysis
Hydrolysis
rice
Oligosaccharides
Polysaccharides
Cellulase
polysaccharide
oxidation
Oxidation
Acids
acid
Thermoascus
Proteins

Keywords

  • Auxiliary activity family 9
  • Cellulose hydrolysis
  • Cellulose oxidation
  • Glycoside hydrolase family 61
  • Lytic polysaccharide monooxygenase
  • Synergism

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology
  • Renewable Energy, Sustainability and the Environment
  • Energy(all)
  • Management, Monitoring, Policy and Law

Cite this

Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates. / Kim, In Jung; Seo, Nari; An, Hyun Joo; Kim, Jae Han; Harris, Paul V.; Kim, Kyoung Heon.

In: Biotechnology for Biofuels, Vol. 10, No. 1, 46, 01.12.2017.

Research output: Contribution to journalArticle

@article{2c558716704542eca88af1ab4310127a,
title = "Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates",
abstract = "Background: Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively. In this study, we investigated comparative characteristics of TtAA9E from Thielavia terrestris belonging to Type 1 and TaAA9A from Thermoascus aurantiacus belonging to Type 3 on cellulose and pretreated lignocellulose. Results: From product analysis, TtAA9E dominantly generated oligosaccharides with an aldonic acid form, which is an evidence of C1 oxidation, while TaAA9A generated oligosaccharides with both aldonic acid and 4-ketoaldose forms, which is evidence of C1 and C4 oxidations, respectively. For hydrolysis of cellulose (Avicel) by cellulase, higher synergism was observed for TtAA9E than for TaAA9A. For hydrolysis of pretreated lignocellulose using rice straw, synergistic behaviors of TtAA9E and TaAA9A were different depending on the pretreatment of rice straw. Specifically, on acid-pretreated rice straw, TtAA9E showed a higher synergism than TaAA9A while on alkali-pretreated rice straw, TaAA9A showed a higher synergism than TtAA9E. Conclusions: We show type-dependent action modes of TtAA9E and TaAA9A for cellulose oxidation together with substrate-dependent synergistic hydrolysis of cellulosic substrates. The results obtained from this study indicate the different behaviors of AA9s on cellulose and pretreated lignocellulose, suggesting a selection of AA9 proteins specific to substrates is required for industrial utilization.",
keywords = "Auxiliary activity family 9, Cellulose hydrolysis, Cellulose oxidation, Glycoside hydrolase family 61, Lytic polysaccharide monooxygenase, Synergism",
author = "Kim, {In Jung} and Nari Seo and An, {Hyun Joo} and Kim, {Jae Han} and Harris, {Paul V.} and Kim, {Kyoung Heon}",
year = "2017",
month = "12",
day = "1",
doi = "10.1186/s13068-017-0721-4",
language = "English",
volume = "10",
journal = "Biotechnology for Biofuels",
issn = "1754-6834",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates

AU - Kim, In Jung

AU - Seo, Nari

AU - An, Hyun Joo

AU - Kim, Jae Han

AU - Harris, Paul V.

AU - Kim, Kyoung Heon

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Background: Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively. In this study, we investigated comparative characteristics of TtAA9E from Thielavia terrestris belonging to Type 1 and TaAA9A from Thermoascus aurantiacus belonging to Type 3 on cellulose and pretreated lignocellulose. Results: From product analysis, TtAA9E dominantly generated oligosaccharides with an aldonic acid form, which is an evidence of C1 oxidation, while TaAA9A generated oligosaccharides with both aldonic acid and 4-ketoaldose forms, which is evidence of C1 and C4 oxidations, respectively. For hydrolysis of cellulose (Avicel) by cellulase, higher synergism was observed for TtAA9E than for TaAA9A. For hydrolysis of pretreated lignocellulose using rice straw, synergistic behaviors of TtAA9E and TaAA9A were different depending on the pretreatment of rice straw. Specifically, on acid-pretreated rice straw, TtAA9E showed a higher synergism than TaAA9A while on alkali-pretreated rice straw, TaAA9A showed a higher synergism than TtAA9E. Conclusions: We show type-dependent action modes of TtAA9E and TaAA9A for cellulose oxidation together with substrate-dependent synergistic hydrolysis of cellulosic substrates. The results obtained from this study indicate the different behaviors of AA9s on cellulose and pretreated lignocellulose, suggesting a selection of AA9 proteins specific to substrates is required for industrial utilization.

AB - Background: Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively. In this study, we investigated comparative characteristics of TtAA9E from Thielavia terrestris belonging to Type 1 and TaAA9A from Thermoascus aurantiacus belonging to Type 3 on cellulose and pretreated lignocellulose. Results: From product analysis, TtAA9E dominantly generated oligosaccharides with an aldonic acid form, which is an evidence of C1 oxidation, while TaAA9A generated oligosaccharides with both aldonic acid and 4-ketoaldose forms, which is evidence of C1 and C4 oxidations, respectively. For hydrolysis of cellulose (Avicel) by cellulase, higher synergism was observed for TtAA9E than for TaAA9A. For hydrolysis of pretreated lignocellulose using rice straw, synergistic behaviors of TtAA9E and TaAA9A were different depending on the pretreatment of rice straw. Specifically, on acid-pretreated rice straw, TtAA9E showed a higher synergism than TaAA9A while on alkali-pretreated rice straw, TaAA9A showed a higher synergism than TtAA9E. Conclusions: We show type-dependent action modes of TtAA9E and TaAA9A for cellulose oxidation together with substrate-dependent synergistic hydrolysis of cellulosic substrates. The results obtained from this study indicate the different behaviors of AA9s on cellulose and pretreated lignocellulose, suggesting a selection of AA9 proteins specific to substrates is required for industrial utilization.

KW - Auxiliary activity family 9

KW - Cellulose hydrolysis

KW - Cellulose oxidation

KW - Glycoside hydrolase family 61

KW - Lytic polysaccharide monooxygenase

KW - Synergism

UR - http://www.scopus.com/inward/record.url?scp=85026896357&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85026896357&partnerID=8YFLogxK

U2 - 10.1186/s13068-017-0721-4

DO - 10.1186/s13068-017-0721-4

M3 - Article

VL - 10

JO - Biotechnology for Biofuels

JF - Biotechnology for Biofuels

SN - 1754-6834

IS - 1

M1 - 46

ER -