Abstract
Diverse signaling pathways have been proposed to regulate store-operated calcium entry (SOCE) in a wide variety of cell types. However, it still needs to be determined if all of these known pathways operate in a single cell type. In this study, we examined involvement of various signaling molecules in SOCE using human fibroblast cells (HSWP). Bradykinin (BK)-stimulated Ca2+ entry, previously shown to be via SOCE, is enhanced by the addition of vanadate, an inhibitor of tyrosine phosphatases. Furthermore, SOCE is regulated by cytochrome P-450, as demonstrated by the fact that the products of cytochrome P-450 activity (14,15 EET) stimulated SOCE while econazole, an inhibitor of cytochrome P450, suppressed BK-stimulated Ca2+ entry. In contrast, Ca2+ entry was unaffected by the guanylate cyclase inhibitor LY83583, or the membrane permeant cyclic GMP analog 8-bromo-cyclic GMP (8-Br-cGMP). Neither nitric oxide donors nor phorbol esters affected BK-stimulated Ca 2+ entry. SOCE in HSWP cells is primarily regulated by tyrosine phosphorylation and the cytochrome P-450 pathway, but not by cyclic GMP, nitric oxide, or protein kinase C. Thus, multiple pathways do operate in a single cell type leading to the activation of Ca2+ entry and some of these signaling pathways are more prominently involved in regulating calcium entry in different cell types.
Original language | English |
---|---|
Pages (from-to) | 703-717 |
Number of pages | 15 |
Journal | Experimental and Molecular Medicine |
Volume | 38 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2006 Dec 31 |
Keywords
- Bradykinin
- Calcium channels
- Protein-tyrosine kinases
- Protein-tyrosine phosphatases
ASJC Scopus subject areas
- Biochemistry
- Molecular Medicine
- Molecular Biology
- Clinical Biochemistry