Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information

Lei Xiang, Yong Chen, Weitang Chang, Yiqiang Zhan, Weili Lin, Qian Wang, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

T1-weighted image (T1WI) and T2-weighted image (T2WI) are the two routinely acquired Magnetic Resonance Imaging (MRI) protocols that provide complementary information for diagnosis. However, the total acquisition time of ~10 min yields the image quality vulnerable to artifacts such as motion. To speed up MRI process, various algorithms have been proposed to reconstruct high quality images from under-sampled k-space data. These algorithms only employ the information of an individual protocol (e.g., T2WI). In this paper, we propose to combine complementary MRI protocols (i.e., T1WI and under-sampled T2WI particularly) to reconstruct the high-quality image (i.e., fully-sampled T2WI). To the best of our knowledge, this is the first work to utilize data from different MRI protocols to speed up the reconstruction of a target sequence. Specifically, we present a novel deep learning approach, namely Dense-Unet, to accomplish the reconstruction task. The Dense-Unet requires fewer parameters and less computation, but achieves better performance. Our results have shown that Dense-Unet can reconstruct a 3D T2WI volume in less than 10 s, i.e., with the acceleration rate as high as 8 or more but with negligible aliasing artefacts and signal-noise-ratio (SNR) loss.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages215-223
Number of pages9
ISBN (Print)9783030009274
DOIs
Publication statusPublished - 2018 Jan 1
Externally publishedYes
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sep 162018 Sep 20

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period18/9/1618/9/20

Fingerprint

Image quality
Magnetic Resonance Imaging
Image Quality
Speedup
K-space
Aliasing
Target
Motion
Deep learning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Xiang, L., Chen, Y., Chang, W., Zhan, Y., Lin, W., Wang, Q., & Shen, D. (2018). Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information. In J. A. Schnabel, C. Davatzikos, C. Alberola-López, G. Fichtinger, & A. F. Frangi (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings (pp. 215-223). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11070 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00928-1_25

Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information. / Xiang, Lei; Chen, Yong; Chang, Weitang; Zhan, Yiqiang; Lin, Weili; Wang, Qian; Shen, Dinggang.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. ed. / Julia A. Schnabel; Christos Davatzikos; Carlos Alberola-López; Gabor Fichtinger; Alejandro F. Frangi. Springer Verlag, 2018. p. 215-223 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11070 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Xiang, L, Chen, Y, Chang, W, Zhan, Y, Lin, W, Wang, Q & Shen, D 2018, Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information. in JA Schnabel, C Davatzikos, C Alberola-López, G Fichtinger & AF Frangi (eds), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11070 LNCS, Springer Verlag, pp. 215-223, 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018, Granada, Spain, 18/9/16. https://doi.org/10.1007/978-3-030-00928-1_25
Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q et al. Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information. In Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, Frangi AF, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Springer Verlag. 2018. p. 215-223. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-030-00928-1_25
Xiang, Lei ; Chen, Yong ; Chang, Weitang ; Zhan, Yiqiang ; Lin, Weili ; Wang, Qian ; Shen, Dinggang. / Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. editor / Julia A. Schnabel ; Christos Davatzikos ; Carlos Alberola-López ; Gabor Fichtinger ; Alejandro F. Frangi. Springer Verlag, 2018. pp. 215-223 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{a614f1f74d294df29683a82ae404ed33,
title = "Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information",
abstract = "T1-weighted image (T1WI) and T2-weighted image (T2WI) are the two routinely acquired Magnetic Resonance Imaging (MRI) protocols that provide complementary information for diagnosis. However, the total acquisition time of ~10 min yields the image quality vulnerable to artifacts such as motion. To speed up MRI process, various algorithms have been proposed to reconstruct high quality images from under-sampled k-space data. These algorithms only employ the information of an individual protocol (e.g., T2WI). In this paper, we propose to combine complementary MRI protocols (i.e., T1WI and under-sampled T2WI particularly) to reconstruct the high-quality image (i.e., fully-sampled T2WI). To the best of our knowledge, this is the first work to utilize data from different MRI protocols to speed up the reconstruction of a target sequence. Specifically, we present a novel deep learning approach, namely Dense-Unet, to accomplish the reconstruction task. The Dense-Unet requires fewer parameters and less computation, but achieves better performance. Our results have shown that Dense-Unet can reconstruct a 3D T2WI volume in less than 10 s, i.e., with the acceleration rate as high as 8 or more but with negligible aliasing artefacts and signal-noise-ratio (SNR) loss.",
author = "Lei Xiang and Yong Chen and Weitang Chang and Yiqiang Zhan and Weili Lin and Qian Wang and Dinggang Shen",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-00928-1_25",
language = "English",
isbn = "9783030009274",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "215--223",
editor = "Schnabel, {Julia A.} and Christos Davatzikos and Carlos Alberola-L{\'o}pez and Gabor Fichtinger and Frangi, {Alejandro F.}",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings",

}

TY - GEN

T1 - Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information

AU - Xiang, Lei

AU - Chen, Yong

AU - Chang, Weitang

AU - Zhan, Yiqiang

AU - Lin, Weili

AU - Wang, Qian

AU - Shen, Dinggang

PY - 2018/1/1

Y1 - 2018/1/1

N2 - T1-weighted image (T1WI) and T2-weighted image (T2WI) are the two routinely acquired Magnetic Resonance Imaging (MRI) protocols that provide complementary information for diagnosis. However, the total acquisition time of ~10 min yields the image quality vulnerable to artifacts such as motion. To speed up MRI process, various algorithms have been proposed to reconstruct high quality images from under-sampled k-space data. These algorithms only employ the information of an individual protocol (e.g., T2WI). In this paper, we propose to combine complementary MRI protocols (i.e., T1WI and under-sampled T2WI particularly) to reconstruct the high-quality image (i.e., fully-sampled T2WI). To the best of our knowledge, this is the first work to utilize data from different MRI protocols to speed up the reconstruction of a target sequence. Specifically, we present a novel deep learning approach, namely Dense-Unet, to accomplish the reconstruction task. The Dense-Unet requires fewer parameters and less computation, but achieves better performance. Our results have shown that Dense-Unet can reconstruct a 3D T2WI volume in less than 10 s, i.e., with the acceleration rate as high as 8 or more but with negligible aliasing artefacts and signal-noise-ratio (SNR) loss.

AB - T1-weighted image (T1WI) and T2-weighted image (T2WI) are the two routinely acquired Magnetic Resonance Imaging (MRI) protocols that provide complementary information for diagnosis. However, the total acquisition time of ~10 min yields the image quality vulnerable to artifacts such as motion. To speed up MRI process, various algorithms have been proposed to reconstruct high quality images from under-sampled k-space data. These algorithms only employ the information of an individual protocol (e.g., T2WI). In this paper, we propose to combine complementary MRI protocols (i.e., T1WI and under-sampled T2WI particularly) to reconstruct the high-quality image (i.e., fully-sampled T2WI). To the best of our knowledge, this is the first work to utilize data from different MRI protocols to speed up the reconstruction of a target sequence. Specifically, we present a novel deep learning approach, namely Dense-Unet, to accomplish the reconstruction task. The Dense-Unet requires fewer parameters and less computation, but achieves better performance. Our results have shown that Dense-Unet can reconstruct a 3D T2WI volume in less than 10 s, i.e., with the acceleration rate as high as 8 or more but with negligible aliasing artefacts and signal-noise-ratio (SNR) loss.

UR - http://www.scopus.com/inward/record.url?scp=85054102153&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054102153&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-00928-1_25

DO - 10.1007/978-3-030-00928-1_25

M3 - Conference contribution

AN - SCOPUS:85054102153

SN - 9783030009274

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 215

EP - 223

BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings

A2 - Schnabel, Julia A.

A2 - Davatzikos, Christos

A2 - Alberola-López, Carlos

A2 - Fichtinger, Gabor

A2 - Frangi, Alejandro F.

PB - Springer Verlag

ER -