TY - JOUR
T1 - Understanding machine-learned density functionals
AU - Li, Li
AU - Snyder, John C.
AU - Pelaschier, Isabelle M.
AU - Huang, Jessica
AU - Niranjan, Uma Naresh
AU - Duncan, Paul
AU - Rupp, Matthias
AU - Müller, Klaus Robert
AU - Burke, Kieron
N1 - Funding Information:
Contract grant sponsor: NSF; contract grant number: CHE-1240252. Contract grant sponsor: SNF; contract grant number: PPOOP2-138932.
Publisher Copyright:
© 2015 Wiley Periodicals, Inc.
PY - 2016/6/5
Y1 - 2016/6/5
N2 - Machine learning (ML) is an increasingly popular statistical tool for analyzing either measured or calculated data sets. Here, we explore its application to a well-defined physics problem, investigating issues of how the underlying physics is handled by ML, and how self-consistent solutions can be found by limiting the domain in which ML is applied. The particular problem is how to find accurate approximate density functionals for the kinetic energy (KE) of noninteracting electrons. Kernel ridge regression is used to approximate the KE of non-interacting fermions in a one dimensional box as a functional of their density. The properties of different kernels and methods of cross-validation are explored, reproducing the physics faithfully in some cases, but not others. We also address how self-consistency can be achieved with information on only a limited electronic density domain. Accurate constrained optimal densities are found via a modified Euler-Lagrange constrained minimization of the machine-learned total energy, despite the poor quality of its functional derivative. A projected gradient descent algorithm is derived using local principal component analysis. Additionally, a sparse grid representation of the density can be used without degrading the performance of the methods. The implications for machine-learned density functional approximations are discussed.
AB - Machine learning (ML) is an increasingly popular statistical tool for analyzing either measured or calculated data sets. Here, we explore its application to a well-defined physics problem, investigating issues of how the underlying physics is handled by ML, and how self-consistent solutions can be found by limiting the domain in which ML is applied. The particular problem is how to find accurate approximate density functionals for the kinetic energy (KE) of noninteracting electrons. Kernel ridge regression is used to approximate the KE of non-interacting fermions in a one dimensional box as a functional of their density. The properties of different kernels and methods of cross-validation are explored, reproducing the physics faithfully in some cases, but not others. We also address how self-consistency can be achieved with information on only a limited electronic density domain. Accurate constrained optimal densities are found via a modified Euler-Lagrange constrained minimization of the machine-learned total energy, despite the poor quality of its functional derivative. A projected gradient descent algorithm is derived using local principal component analysis. Additionally, a sparse grid representation of the density can be used without degrading the performance of the methods. The implications for machine-learned density functional approximations are discussed.
KW - density functional theory
KW - kinetic energy functional
KW - machine learning
KW - orbital free
KW - self-consistent calculation
UR - http://www.scopus.com/inward/record.url?scp=84947256057&partnerID=8YFLogxK
U2 - 10.1002/qua.25040
DO - 10.1002/qua.25040
M3 - Review article
AN - SCOPUS:84947256057
SN - 0020-7608
VL - 116
SP - 819
EP - 833
JO - International Journal of Quantum Chemistry
JF - International Journal of Quantum Chemistry
IS - 11
ER -