TY - JOUR
T1 - Unsupervised Learning for Brain-Computer Interfaces Based on Event-Related Potentials
T2 - Review and Online Comparison [Research Frontier]
AU - Hübner, David
AU - Verhoeven, Thibault
AU - Müller, Klaus Robert
AU - Kindermans, Pieter Jan
AU - Tangermann, Michael
N1 - Funding Information:
DH and MT thankfully acknowledge the support by BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG), grant number EXC 1086. DH and MT further acknowledge the bwHPC initiative, grant INST 39/963-1 FUGG. PJK gratefully acknowledges funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement NO 657679. TV thankfully acknowledges financial support from the Special Research Fund of Ghent University. KRM thanks DFG (DFG SPP 1527, MU 987/14-1) and the Federal Ministry for Education and Research (BMBF No. 2017-0-00451) as well as support by the Brain Korea 21 Plus Program by the Institute for Information & Communications Technology Promotion (IITP) grant (1IS14013A) funded by the Korean government.
Funding Information:
DH and MT thankfully acknowledge the support by BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG), grant number EXC 1086. DH and MT further acknowledge the bwHPC initiative, grant INST 39/963-1 FUGG. PJK gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement NO 657679. TV thankfully acknowledges financial support from the Special Research Fund of Ghent University. KRM thanks DFG (DFG SPP 1527, MU 987/14-1) and the Federal Ministry for Education and Research (BMBF No. 2017-0-00451) as well as support by the Brain Korea 21 Plus Program by the Institute for Information & Communications Technology Promotion (IITP) grant (1IS14013A) funded by the Korean government.
Publisher Copyright:
© 2018 IEEE.
PY - 2018/5
Y1 - 2018/5
N2 - One of the fundamental challenges in brain-computer interfaces (BCIs) is to tune a brain signal decoder to reliably detect a user's intention. While information about the decoder can partially be transferred between subjects or sessions, optimal decoding performance can only be reached with novel data from the current session. Thus, it is preferable to learn from unlabeled data gained from the actual usage of the BCI application instead of conducting a calibration recording prior to BCI usage. We review such unsupervised machine learning methods for BCIs based on event-related potentials of the electroencephalogram. We present results of an online study with twelve healthy participants controlling a visual speller. Online performance is reported for three completely unsupervised learning methods: (1) learning from label proportions, (2) an expectation-maximization approach and (3) MIX, which combines the strengths of the two other methods. After a short ramp-up, we observed that the MIX method not only defeats its two unsupervised competitors but even performs on par with a state-of-the-art regularized linear discriminant analysis trained on the same number of data points and with full label access. With this online study, we deliver the best possible proof in BCI that an unsupervised decoding method can in practice render a supervised method unnecessary. This is possible despite skipping the calibration, without losing much performance and with the prospect of continuous improvement over a session. Thus, our findings pave the way for a transition from supervised to unsupervised learning methods in BCIs based on eventrelated potentials.
AB - One of the fundamental challenges in brain-computer interfaces (BCIs) is to tune a brain signal decoder to reliably detect a user's intention. While information about the decoder can partially be transferred between subjects or sessions, optimal decoding performance can only be reached with novel data from the current session. Thus, it is preferable to learn from unlabeled data gained from the actual usage of the BCI application instead of conducting a calibration recording prior to BCI usage. We review such unsupervised machine learning methods for BCIs based on event-related potentials of the electroencephalogram. We present results of an online study with twelve healthy participants controlling a visual speller. Online performance is reported for three completely unsupervised learning methods: (1) learning from label proportions, (2) an expectation-maximization approach and (3) MIX, which combines the strengths of the two other methods. After a short ramp-up, we observed that the MIX method not only defeats its two unsupervised competitors but even performs on par with a state-of-the-art regularized linear discriminant analysis trained on the same number of data points and with full label access. With this online study, we deliver the best possible proof in BCI that an unsupervised decoding method can in practice render a supervised method unnecessary. This is possible despite skipping the calibration, without losing much performance and with the prospect of continuous improvement over a session. Thus, our findings pave the way for a transition from supervised to unsupervised learning methods in BCIs based on eventrelated potentials.
UR - http://www.scopus.com/inward/record.url?scp=85045419552&partnerID=8YFLogxK
U2 - 10.1109/MCI.2018.2807039
DO - 10.1109/MCI.2018.2807039
M3 - Article
AN - SCOPUS:85045419552
SN - 1556-603X
VL - 13
SP - 66
EP - 77
JO - IEEE Computational Intelligence Magazine
JF - IEEE Computational Intelligence Magazine
IS - 2
ER -