Urchin-shaped hollow iron-nitrogen-doped carbon microspheres as high-performance electrocatalysts for oxygen reduction

Min Jung Park, S. Joon Kwon, Hyun S. Park, Sung Jong Yoo, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Jin Young Kim

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Oxygen reduction reaction (ORR) kinetics are enhanced in alkaline media. Hence, alternative non-platinum (Pt)-group metal electrocatalysts have been investigated extensively in this medium to compete with Pt in terms of performance and durability. Among various non-Pt catalysts, one of the most popular class of electrocatalysts is iron- and nitrogen-doped carbon-based (Fe-N-C) by the high electrocatalytic activity and selectivity in ORR. However, the inherent catalytic reactivity of such non-Pt electrocatalysts remains inferior to that of state-of-the-art Pt electrocatalysts. Here, we explore the ORR of hollow and urchin-like, three-dimensional (3D) nanostructured Fe-N-Cs prepared via polymerization-induced self-assembly of aniline followed by carbonization. The resulting Fe-N-Cs consist of a hollow microsphere framework coupled with nanorod bundles, and exhibit large surface areas (874 m2g-1), hierarchical cavities, and excellent electrical conductivities (0.63 Scm-1) as electrodes. They are of particular interest as oxygen reduction electrocatalyst for proton exchange membrane fuel cells (PEMFCs). These unique features, which enhance electrocatalytic efficiency, are attributed to efficient mass- and electro-transport ORR kinetics. Electrochemical experiments reveal improved onset (ca. 1.04 V) and half-wave potentials (ca. 0.9 V), which is comparable to those of commercial Pt electrocatalysts. The 3D hierarchical porous network with high interdigitation of well-dispersed nanorod building blocks is thought to be key to facilitating the ORR reaction.

Original languageEnglish
Pages (from-to)F224-F228
JournalJournal of the Electrochemical Society
Volume164
Issue number4
DOIs
Publication statusPublished - 2017
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Urchin-shaped hollow iron-nitrogen-doped carbon microspheres as high-performance electrocatalysts for oxygen reduction'. Together they form a unique fingerprint.

Cite this