Use of antireflection layers to avoid ghost plating on Ni/Cu plated crystalline silicon solar cells

Myeong Sang Jeong, Sung Jin Choi, Hyo Sik Chang, Jeong In Lee, Min Gu Kang, Donghwan Kim, Hee Eun Song

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Screen printing is a method commonly used for making electrodes for crystalline silicon solar cells. Although the screen-printing method is fast and easy, screen-printed electrodes have a porous structure, high contact resistance, and low aspect ratio. On the other hand, plated electrodes have low contact resistance and narrow electrode width. Therefore, the plating method could be substituted for the screen-printing method in crystalline silicon solar cells. During the plating process, ghost plating can appear at the surface when the quality of the passivation layer is poor, causing an increase in the recombination rate. In this paper, light-induced plating was applied to the fabrication of electrodes, and various passivation layers were investigated to remove ghost plating in crystalline silicon solar cells. These included, (1) SiNx deposited by plasma-enhanced chemical vapor deposition (PECVD), (2) a double SiNx layer formed by PECVD, (3) a double layer with thermal silicon oxide and SiNx deposited by PECVD, and (4) a double layer comprising SiNx and SiOx formed by PECVD. For the plated solar cells, a laser was used to remove various antireflection coating (ARC) layers and phosphoric acid was spin-coated onto the doped silicon wafer prior to laser ablation. Also, a screen-printed solar cell was fabricated to compare plated solar cells with screen-printed solar cells. As a result, we found that a thermal SiO2/PECVD SiNx layer showed the lowest pinhole density and its wet vapor transmission rate was characterized. The solar cell with the thermal SiO2/PECVD SiNx layer showed the lowest J02 value, as well as improved Voc and Jsc.

Original languageEnglish
Article number036502
JournalJapanese Journal of Applied Physics
Volume55
Issue number3
DOIs
Publication statusPublished - 2016 Mar 1

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Use of antireflection layers to avoid ghost plating on Ni/Cu plated crystalline silicon solar cells'. Together they form a unique fingerprint.

  • Cite this