Use of neonatal chondrocytes for cartilage tissue engineering

Sun Woong Kang, Jung-Ho Park, Byung Soo Kim

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosaminoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

Original languageEnglish
Pages (from-to)259-264
Number of pages6
JournalJournal of Microbiology and Biotechnology
Volume15
Issue number2
Publication statusPublished - 2005 Apr 1

Fingerprint

Tissue Engineering
Chondrocytes
Cartilage
Collagen Type II
A73025
Polymers
Collagen
Transplantation
Staining and Labeling
Alcian Blue
Cell Transplantation
Hematoxylin
Eosine Yellowish-(YS)
Growth
Nude Mice
Postpartum Period
Extracellular Matrix

Keywords

  • Cartilage
  • Neonatal chondrocyte
  • Tissue engineering

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology

Cite this

Use of neonatal chondrocytes for cartilage tissue engineering. / Kang, Sun Woong; Park, Jung-Ho; Kim, Byung Soo.

In: Journal of Microbiology and Biotechnology, Vol. 15, No. 2, 01.04.2005, p. 259-264.

Research output: Contribution to journalArticle

Kang, Sun Woong ; Park, Jung-Ho ; Kim, Byung Soo. / Use of neonatal chondrocytes for cartilage tissue engineering. In: Journal of Microbiology and Biotechnology. 2005 ; Vol. 15, No. 2. pp. 259-264.
@article{b12d311f0c3d4f79bddcbe63b40be44c,
title = "Use of neonatal chondrocytes for cartilage tissue engineering",
abstract = "Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosaminoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.",
keywords = "Cartilage, Neonatal chondrocyte, Tissue engineering",
author = "Kang, {Sun Woong} and Jung-Ho Park and Kim, {Byung Soo}",
year = "2005",
month = "4",
day = "1",
language = "English",
volume = "15",
pages = "259--264",
journal = "Journal of Microbiology and Biotechnology",
issn = "1017-7825",
publisher = "Korean Society for Microbiolog and Biotechnology",
number = "2",

}

TY - JOUR

T1 - Use of neonatal chondrocytes for cartilage tissue engineering

AU - Kang, Sun Woong

AU - Park, Jung-Ho

AU - Kim, Byung Soo

PY - 2005/4/1

Y1 - 2005/4/1

N2 - Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosaminoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

AB - Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosaminoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

KW - Cartilage

KW - Neonatal chondrocyte

KW - Tissue engineering

UR - http://www.scopus.com/inward/record.url?scp=18144384457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=18144384457&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:18144384457

VL - 15

SP - 259

EP - 264

JO - Journal of Microbiology and Biotechnology

JF - Journal of Microbiology and Biotechnology

SN - 1017-7825

IS - 2

ER -