TY - GEN
T1 - User-centric interference nulling in downlink multi-antenna heterogeneous networks
AU - Wu, Yueping
AU - Cui, Ying
AU - Clerckx, Bruno
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/9/28
Y1 - 2015/9/28
N2 - Heterogeneous networks (HetNets) have strong interference due to spectrum reuse. This affects the signal-to-interference ratio (SIR) of each user, and hence is one of the limiting factors of network performance. However, in previous works, interference management approaches in HetNets are mainly based on interference level, and thus cannot effectively utilize the limited resource to improve network performance. In this paper, we propose a user-centric interference nulling (IN) scheme in downlink two-tier HetNets to improve network performance by improving each user's SIR. This scheme has three design parameters: the maximum degree of freedom for IN (i.e., maximum IN DoF), and the IN thresholds for the macro and pico users, respectively. Using tools from stochastic geometry, we first obtain a tractable expression of the coverage (equivalently outage) probability. Then, we characterize the asymptotic behavior of the outage probability in the high reliability regime. The asymptotic results show that the maximum IN DoF can affect the order gain of the asymptotic outage probability, while the IN thresholds only affect the coefficient of the asymptotic outage probability. Moreover, we show that the IN scheme can linearly improve the outage performance, and characterize the optimal maximum IN DoF which minimizes the asymptotic outage probability.
AB - Heterogeneous networks (HetNets) have strong interference due to spectrum reuse. This affects the signal-to-interference ratio (SIR) of each user, and hence is one of the limiting factors of network performance. However, in previous works, interference management approaches in HetNets are mainly based on interference level, and thus cannot effectively utilize the limited resource to improve network performance. In this paper, we propose a user-centric interference nulling (IN) scheme in downlink two-tier HetNets to improve network performance by improving each user's SIR. This scheme has three design parameters: the maximum degree of freedom for IN (i.e., maximum IN DoF), and the IN thresholds for the macro and pico users, respectively. Using tools from stochastic geometry, we first obtain a tractable expression of the coverage (equivalently outage) probability. Then, we characterize the asymptotic behavior of the outage probability in the high reliability regime. The asymptotic results show that the maximum IN DoF can affect the order gain of the asymptotic outage probability, while the IN thresholds only affect the coefficient of the asymptotic outage probability. Moreover, we show that the IN scheme can linearly improve the outage performance, and characterize the optimal maximum IN DoF which minimizes the asymptotic outage probability.
UR - http://www.scopus.com/inward/record.url?scp=84969790529&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2015.7282970
DO - 10.1109/ISIT.2015.7282970
M3 - Conference contribution
AN - SCOPUS:84969790529
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2817
EP - 2821
BT - Proceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Symposium on Information Theory, ISIT 2015
Y2 - 14 June 2015 through 19 June 2015
ER -